精英家教网 > 高中数学 > 题目详情
某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y的值为(  )
A、6B、7C、8D、9
考点:茎叶图
专题:概率与统计
分析:由甲班学生的众数判定x的值,乙班学生的平均分求出y的值.
解答: 解:根据题意,得
甲班学生的众数是5,所以x=5,
乙班学生的平均分是81,
所以
78+(70+y)+81+81+80+92
6
=81,
解得y=4,
x+y=9;
故选:D.
点评:本题考查了利用茎叶图判定众数以及求平均数的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有七名同学站成一排照毕业纪念照,其中甲不能和乙站在一起,并且乙、丙两位同学要站在一起,则不同的站法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①合情推理是由特殊到一般的推理,得到的结论不一定正确,演绎推理是由一般到特殊的推理,得到的结论一定正确;
②一般地,当r的绝对值大于0.75时,认为两个变量之间有很强的线性相关关系,如果变量y与x之间的相关系数r=-0.9568,则变量y与x之间具有线性关系;
③用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量k2的值越大,说明“x与y有关系”成立的可能性越大;
④命题P:?x∈R使得x2+x+1<0,则?P;?x∈R均有x2+x+1≥0.
其中结论正确的序号为
 
.(写出你认为正确的所有结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上的一点,M到定点A(
7
2
,4)和焦点F的距离之和的最小值等于5,则抛物线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
4-x2
与直线y=k(x-2)+3有两个不同的公共点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为(  )
A、4
B、2
C、
8
5
D、
12
5

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F(c,0),以原点为圆心,c为半径的圆与双曲线在第二象限的交点为A,若此圆在A点处切线的斜率为
3
3
,则双曲线C的离心率为(  )
A、
3
+1
B、
6
C、2
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意两个非零的平面向量
α
β
,定义
α
o
β
=
α
β
β
β
,若平面向量
a
b
满足|
a
|>|
b
|>0,
a
b
夹角θ∈(0,
π
4
),且
a
o
b
b
o
a
都在集合{
n
3
|n∈Z}中,则
a
o
b
的取值个数最多为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2ax+1(-2<a<0),若x1<x2,且x1+x2=a,则(  )
A、f(x1)>f(x2
B、f(x1)<f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不确定
E、所以f(x1)>f(x2

查看答案和解析>>

同步练习册答案