精英家教网 > 高中数学 > 题目详情
5.△ABC中,若2sinBcosC=sinA,判∫断三角形的形状.

分析 通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.

解答 解:△ABC中,因为sinA=2sinBcosC,
所以sin(B+C)=2sinBcosC,
所以sinBcosC-sinCcosB=0,即sin(B-C)=0,
因为A,B,C是三角形内角,
所以B=C.
故三角形为等腰三角形.

点评 本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R)
(1)判断“f(x)为偶函数”是“φ=π”的什么条件;
(2)证明:f(x)为奇函数的充要条件是φ=kπ+$\frac{π}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某观察站C在A城的南偏西20°方向,由A城出发有一条公路,走向是南偏东40°,距离C处31千米的公路上的B处有一人正沿公路向A城走去,走了20千米后到达D处,此时C、D距离为21千米,问此人还需走(  )千米才能到达A城.
A.5B.10C.15D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域.
(1)y=2x+1,x∈{1,2,3,4,5};
(2)y=$\sqrt{x}$+1;
(3)y=$\frac{x}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn满足Sn=2an-2.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,数列{bn}的前n项和为Tn,若Tn=$\frac{19}{20}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)是R上的偶函数,且当x≥0时,f(x)=2x-2x${\;}^{\frac{1}{2}}$,又a是函数g(x)=ln(x+1)-$\frac{2}{x}$的零点,则f(-2),f(a),f(1.5)的大小关系是f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合M={(x,y)|-3≤x≤3,-2≤y≤2},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;
(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于$\frac{\sqrt{2}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x)=$\left\{\begin{array}{l}{-1,-1<x≤0}\\{1,0<x≤1}\end{array}\right.$,则f(4)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.道德教育培训前半年内某单位餐厅的固定餐椅经常有损坏,道德教育培训时全修好;单位对道德教育培训前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数未损坏餐椅数总 计
道德教育培训前50150200
道德教育培训后30170200
总  计80320400
(1)求:道德教育培训前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与道德教育培训是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与道德教育培训有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案