精英家教网 > 高中数学 > 题目详情
设f(x)=cos3x(x∈R),则曲线y=f(x)在x=
π
4
处的切线的斜率为(  )
A、-
3
B、-
3
2
2
C、
3
2
D、
3
2
2
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:直接求出原函数的导函数,在导函数解析式中,取x=
π
4
得答案.
解答: 解:由f(x)=cos3x,得:f′(x)=-3sin3x,
f(
π
4
)=-3sin
4
=-
3
2
2

∴曲线y=f(x)在x=
π
4
处的切线的斜率为-
3
2
2

故选:B.
点评:本题考查利用导数研究曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一船向正北方向匀速行驶,看见正西方向两座相距5
3
海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西30°方向上,另一灯塔在南偏西60°方向上,则该船的速度是
 
海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且PA=3,PB=2,PC=2,设M是底面三角形ABC内一动点,定义:f(M)=(m,n,p),其中m,n,p分别表示三棱锥M-PAB,M-PBC,M-PAC的体积,若f(M)=(1,x,4y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值是(  )
A、2-
2
B、
2
2
-1
2
C、
9-4
2
4
D、6-4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中错误的命题是(  )
①若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC是等边三角形
②若sinA=cosB,则△ABC是直角三角形;
③若cosAcosBcosC<0,则△ABC是钝角三角形;
④若sin2A=sin2B,则△ABC是等腰三角形.
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图给出的程序框图,运行相应的程序,输出的结果S为(  )
A、-1007B、1007
C、1008D、-3022

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
x
+
1
x2
n的二项展开式中,第三项的系数与第二项的系数的差为20,则展开式中含
1
x
的项的系数为(  )
A、8B、28C、56D、70

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(-
79
6
π)的值为(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

一个骰子投掷2次,得到的点数分别为a,b,求直线y=a-b与函数y=sinx图象所有交点中相邻两个交点的距离都相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.在晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)在这20个路段中,轻度拥堵、中度拥堵的路段各有多少个?
(2)从这20个路段中随机抽出3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.

查看答案和解析>>

同步练习册答案