精英家教网 > 高中数学 > 题目详情
已知△ABC中,a=c=
6
-
2
,且A=15°,则b等于(  )
A、2
B、
6
-
2
C、4-2
3
D、4+2
3
考点:余弦定理
专题:解三角形
分析:利用两角和与差的余弦函数公式求出cosA的值,利用余弦定理列出关系式,把a,c,cosA的值代入求出b的值即可.
解答: 解:∵△ABC中,a=c=
6
-
2
,且A=15°,即cosA=cos15°=cos(45°-30°)=
2
2
×
3
2
+
2
2
×
1
2
=
6
+
2
4

∴由余弦定理得:a2=b2+c2-2bccosA,即8-4
3
=b2+8-4
3
-2(
6
-
2
)b•
6
+
2
4

解得:b=2或b=0(舍去),
则b等于2,
故选:A.
点评:此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若O为△ABC所在平面内任一点,且满足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,则△ABC一定是(  )
A、正三角形
B、等腰三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t(100万元)可增加销售额约为-t2+5t(100万元)(0≤t≤3).
(1)若该集团将当年的广告费控制在300万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?
(2)现在该集团准备投入300万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x(100万元),可增加的销售额约为-
1
3
x3+x2+3x(100万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]为表示不超过x的最大整数,则函数y=lg[x]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
kx2-6kx+(k+8)
的定义域为R,则k的取值范围是(  )
A、[1,+∞)
B、(1,+∞)
C、{0}∪(1,+∞)
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x|x-a|,a∈R.
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[0,2]上的最小值是-1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若三条线段的长分别为3,6,7,则用这三条线段围成的三角形的形状是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A(3,1)、B(-2,k)、C(8,11)共线,则k的取值是(  )
A、-6B、-7C、-8D、-9

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆中心在原点,焦点在x轴,离心率e=
2
2
,左、右焦点分别为F1,F2,过F2且斜率为
2
的直线交椭圆于A、B两点,若S △ABF1=20
3
,求此椭圆的标准方程.

查看答案和解析>>

同步练习册答案