精英家教网 > 高中数学 > 题目详情
5.如图,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,且AB=$\sqrt{3}$,BC=4,AA1=3,M为棱AA1上的点,且AB1∩BM=P,AC1∩CM=Q.
(Ⅰ)若AM=$\frac{1}{3}$AA1,求PQ的长;
(Ⅱ)若AM=$\frac{1}{2}$AA1,求两面角A-PQ-B的余弦值.

分析 (Ⅰ)通过△AMP∽△B1BP、△AMQ∽△C1CQ即得结论;
(Ⅱ)易得APB即为二面角A-PQ-B的平面角,通过已知条件计算即可.

解答 解:(Ⅰ)根据题意,易得△AMP∽△B1BP,△AMQ∽△C1CQ,
又∵AM=$\frac{1}{3}$AA1,∴$AM=\frac{1}{3}B{B}_{1}=\frac{1}{3}C{C}_{1}$,
∴$\frac{MP}{PB}=\frac{AM}{B{B}_{1}}=\frac{1}{3}$,$\frac{MQ}{QC}=\frac{AM}{C{C}_{1}}=\frac{1}{3}$,
即△MPQ∽△MCB,
∴PQ∥BC,∴$\frac{PQ}{BC}=\frac{MQ}{MQ+QC}=\frac{1}{4}$,
又∵BC=4,
∴PQ=$\frac{1}{4}BC=\frac{1}{4}×4=1$;
(Ⅱ)∵A1A⊥BC,AB⊥BC,∴BC⊥平面ABB1A1
 又∵PQ∥BC,∴PQ⊥平面ABB1A1
∴PQ⊥PA,PQ⊥PB,∴∠APB即为二面角A-PQ-B的平面角,
∵AB=$\sqrt{3}$,AA1=3,∴$A{B}_{1}=\sqrt{A{B}^{2}+B{{B}_{1}}^{2}}$=$\sqrt{3+{3}^{2}}$=$2\sqrt{3}$,
又∵AM=$\frac{1}{2}$AA1,∴BM=$\sqrt{A{M}^{2}+A{B}^{2}}$=$\sqrt{(\frac{3}{2})^{2}+3}$=$\frac{\sqrt{21}}{2}$,
∵△AMP∽△B1BP,
∴AP=$\frac{1}{3}A{B}_{1}$=$\frac{2\sqrt{3}}{3}$,BP=$\frac{2}{3}BM$=$\frac{\sqrt{21}}{3}$,
∴cos∠APB=$\frac{\frac{4}{3}+\frac{7}{3}-3}{2•\frac{2\sqrt{3}}{3}•\frac{\sqrt{21}}{3}}$=$\frac{\sqrt{7}}{14}$.

点评 本题考查二面角,相似三角形的性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知圆C:(x-a)2+y2=1,直线l:x=1;则:“$\frac{1}{2}≤a≤\frac{3}{2}$”是“C上恰有不同四点到l的距离为$\frac{1}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(-2,3)、B(1,-4),则直线AB的方程是7x+3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{x^2}{4}-\frac{y^2}{12}$=1的两条渐近线的夹角的弧度数为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}+x+k,x≤1}\\{-\frac{1}{2}+{{log}_{\frac{1}{3}}}x,x>1}\end{array}}$,g(x)=$\frac{x}{{{x^2}+1}}$,若对任意的x1,x2∈R,均有f(x1)≤g(x2),则实数k的取值范围是$({-∞,-\frac{3}{4}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.
(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;
(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={x|x=sinθ,θ∈R},N={x|$\sqrt{2}$≤2x≤8},则M∩N=(  )
A.$[\frac{1}{2},2]$B.[-1,3]C.$[-1,\frac{1}{2}]$D.$[\frac{1}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若在区间[1,2]上存在实数x使2x(2x+a)<1成立,则a的取值范围是(-∞,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题:
①“a>b”是“ac2>bc2”的充要条件;
②y=2x-2-x是奇函数;
③若“p∨q”为真,则“p∧q”为真;
④若集合A∩B=A,则A⊆B,
其中真命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案