精英家教网 > 高中数学 > 题目详情
20.如图(1)有面积关系:$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$,则图(2)有体积关系:$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.

分析 这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由面积的性质类比推理到体积性质.

解答 解:∵在由平面图形到空间图形的类比推理中,
一般是由点的性质类比推理到线的性质,
由线的性质类比推理到面的性质,
由面积的性质类比推理到体积性质.
故由$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$(面积的性质)
结合图(2)可类比推理出:
体积关系$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.
故答案为:$\frac{PA′•PB′•PC′}{PA•PB•PC}$

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{3}$,则下列说法正确的是(  )
A.甲获胜的概率是$\frac{1}{6}$B.甲不输的概率是$\frac{1}{2}$
C.乙输了的概率是$\frac{2}{3}$D.乙不输的概率是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知侧棱与底面垂直的三棱柱的底面是边长为2$\sqrt{3}$的正三角形,三棱柱存在一个与上、下底面及所有侧面都相切的内切球,则该棱柱的外接球与内切球的半径之比为(  )
A.$\sqrt{3}$:$\sqrt{2}$B.$\sqrt{5}$:1C.$\sqrt{5}$:$\sqrt{2}$D.$\sqrt{2}$:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知⊙O的方程x2+y2=4,直线l:x=4,在以O为极点,x轴的正半轴为极轴的极坐标系中,过极点作射线交⊙O于A,交直线l于B.
(1)写出⊙O及直线l的极坐标方程;
(2)设AB中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+2x-1(b∈R).
(1)设g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函数g(x)在(0,+∞)上没有零点,求实数b的取值范围;
(2)若对?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.关于x的方程2ax=x2-2alnx有唯一解,则正实数a的值为(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=cos2x+2asinx-1,x∈[0,$\frac{π}{2}$]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于集合A,B,如果映射f:A→B满足f(a)+f(b)=f(c).则把此映射称为“引射”,若A={a,b,c},B={1,0,-1},则f:A→B构成的所有映射中“引导映射”的概率$\frac{7}{25}$.

查看答案和解析>>

同步练习册答案