精英家教网 > 高中数学 > 题目详情
11.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求$\frac{1}{tanα}$的值.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα-cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα-cosα的值,联立求出sinα与cosα的值,即可确定出$\frac{1}{tanα}$的值.

解答 解:把sinα+cosα=$\frac{1}{5}$①,两边平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{25}$,
∴2sinαcosα=-$\frac{24}{25}$,
∵α∈(0,π),
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{49}{25}$,即sinα-cosα=$\frac{7}{5}$②,
联立①②,解得:sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
则$\frac{1}{tanα}$=$\frac{cosα}{sinα}$=-$\frac{3}{4}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若2a=6,b=log23,则a-b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.补充完成化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}$的过程.
解:∵sin(2π-α)=-sinα,cos(π+α)=-cosα,
cos ($\frac{π}{2}$+α)=-sinα,cos ($\frac{11}{2}$-α)=-sinα,
cos(π-α)=-cosα,sin(3π+α)=-sinα,
sin(-π-α)=sinα,sin ($\frac{9}{2}$+α)=cosα,
∴原式=tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是巴蜀中学“高2017级跃动青春自编操”比赛上,七位评委为某班打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数分别为(  )
A.84,84B.84,85C.85,84D.85,85

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为0.18J.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2-2x+alnx(a∈R).
(1)试讨论f(x)的单调性;
(2)若函数f(x)有两个极值点x1,x2(x1<x2),求证:f(x2)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.[A]在几何中可以类比平面几何的结论推理空间几何的结论,如平面内的三点共线类比空间中的四点共面.
(1)已知点A,B,C是平面内三点,若存在实数λ,使得$\overrightarrow{AB}$=$λ\overrightarrow{AC}$成立,则点A,B,C共线.类比上述结论,写出空间中四点共面的结论;
(2)已知(1)结论的逆命题正确,请利用其解决以下问题:已知点A,B,C,D是空间中共面的四点,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=90°,|$\overrightarrow{AD}$|=2$\sqrt{5}$,$\overrightarrow{AD}⊥\overrightarrow{BC}$,试用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图(1)有面积关系:$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$,则图(2)有体积关系:$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是正方形,AB=2,PB与平面PAC所成的角的正弦值为$\frac{\sqrt{10}}{10}$,若这个四棱锥各顶点都在一个球面上,则这个球的表面积为24π.

查看答案和解析>>

同步练习册答案