精英家教网 > 高中数学 > 题目详情
2.补充完成化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}$的过程.
解:∵sin(2π-α)=-sinα,cos(π+α)=-cosα,
cos ($\frac{π}{2}$+α)=-sinα,cos ($\frac{11}{2}$-α)=-sinα,
cos(π-α)=-cosα,sin(3π+α)=-sinα,
sin(-π-α)=sinα,sin ($\frac{9}{2}$+α)=cosα,
∴原式=tanα.

分析 利用诱导公式,同角三角函数基本关系式即可化简求值得解.

解答 解:∵sin(2π-α)=-sinα,cos(π+α)=-cosα,
cos ($\frac{π}{2}$+α)=-sinα,cos ($\frac{11}{2}$π-α)=-sinα,
cos(π-α)=-cosα,sin(3π+α)=-sinα,
sin(-π-α)=sinα,sin ($\frac{9}{2}$+α)=cosα,
∴原式=$\frac{(-sin)(-cos)(-sin)(-sin)}{(-cos)(-sin)(sin)(cos)}$=tanα.
故答案为:-sinα,-cosα,-sinα,-sinα,-cosα,-sinα,sinα,cosα,tanα.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2$\sqrt{3}$,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A-DBE的体积;
(3)求二面角D-BE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)在x=x0处导数f′(x0)的几何意义是(  )
A.在点x=x0处的斜率
B.在点 ( x0,f ( x0 ) ) 处的切线与x轴所夹的锐角正切值
C.点 ( x0,f ( x0 ) ) 与点 (0,0 ) 连线的斜率
D.曲线y=f(x)在点 ( x0,f ( x0 ) ) 处的切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{3}$,则下列说法正确的是(  )
A.甲获胜的概率是$\frac{1}{6}$B.甲不输的概率是$\frac{1}{2}$
C.乙输了的概率是$\frac{2}{3}$D.乙不输的概率是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}<0$的解集为$(-1,-\frac{1}{3})∪(\frac{1}{2},1)$,则关于x的不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$的解集为(  )
A.(-2,2)∪(1,3)B.(-3,-1)∪(1,2)C.(-2,3)∪(-1,1)D.(-3,1)∪(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知${a_1}=\frac{1}{4}$,${a_n}=\frac{1}{2}{a_{n-1}}+{2^{-n}}$(n≥2)计算这个数列前4项,并归纳该数列一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)对任意x∈R都有f(x)+f(1-x)=2.
(1)求$f(\frac{1}{2})$和$f(\frac{1}{n})+f(\frac{n-1}{n})(n∈{N^*})$的值;
(2)数列{an}满足${a_n}=f(0)+f(\frac{1}{n})+f(\frac{2}{n})+…+f(\frac{n-1}{n})+f(1)$,(n∈N*),求证:{an}是等差数列.
(3)在(2)的情况下,令bn=$\frac{1}{{{a_n}-1}}$,Tn=b1+b2+…+bn,若a>1,对任意n≥2,不等式T2n-Tn>$\frac{7}{12}(1+{log_{a+1}}x-{log_a}x)$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.关于x的方程2ax=x2-2alnx有唯一解,则正实数a的值为(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案