精英家教网 > 高中数学 > 题目详情
17.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}<0$的解集为$(-1,-\frac{1}{3})∪(\frac{1}{2},1)$,则关于x的不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$的解集为(  )
A.(-2,2)∪(1,3)B.(-3,-1)∪(1,2)C.(-2,3)∪(-1,1)D.(-3,1)∪(-1,2)

分析 关于x的不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$可看成前者不等式中的x用$\frac{1}{x}$代入可得不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$的解集.

解答 解:若关于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}<0$的解集为$(-1,-\frac{1}{3})∪(\frac{1}{2},1)$,
则关于x的不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$可看成前者不等式中的x用$\frac{1}{x}$代入可得,
则$\frac{1}{x}$∈$(-1,-\frac{1}{3})∪(\frac{1}{2},1)$,则x∈(-3,-1)∪(1,2),
故选:B.

点评 本题考查不等式的解法,考查方法的类比,正确理解题意是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$-$\frac{1}{2}$,则函数y=f(x)的值域是(  )
A.[-$\frac{1}{2}$,1]B.(0,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆C的方程;
(2)已知圆的方程是x2+y2=a2+b2,过圆上任一点P作椭圆C的两条切线l1与l2,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面上三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,其中$\overrightarrow{a}$=(1,2).
(1)若|$\overrightarrow{c}$|=3$\sqrt{5}$,且$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=3$\sqrt{5}$,且(4$\overrightarrow{a}$-$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),求$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.
(1)求证:EF=EG;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.补充完成化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}$的过程.
解:∵sin(2π-α)=-sinα,cos(π+α)=-cosα,
cos ($\frac{π}{2}$+α)=-sinα,cos ($\frac{11}{2}$-α)=-sinα,
cos(π-α)=-cosα,sin(3π+α)=-sinα,
sin(-π-α)=sinα,sin ($\frac{9}{2}$+α)=cosα,
∴原式=tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设0<a<1,函数f(x)=loga|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为0.18J.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x,y,z为正实数,且$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=1,求x+4y+9z的最小值及取得最小值时x,y,z的值.

查看答案和解析>>

同步练习册答案