精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$-$\frac{1}{2}$,则函数y=f(x)的值域是(  )
A.[-$\frac{1}{2}$,1]B.(0,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

分析 根据分式函数的性质进行求解即可.

解答 解:∵f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$-$\frac{1}{2}$=$\frac{{2}^{x}+1-1}{1+{2}^{x}}$-$\frac{1}{2}$=1-$\frac{1}{1+{2}^{x}}$-$\frac{1}{2}$=$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$,
∵1+2x>1,则0<$\frac{1}{1+{2}^{x}}$<1,则-1<$\frac{1}{1+{2}^{x}}$<0,-$\frac{1}{2}$<$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$<$\frac{1}{2}$,
即-$\frac{1}{2}$<f(x)<$\frac{1}{2}$,
即函数的值域为(-$\frac{1}{2}$,$\frac{1}{2}$),
故选:C

点评 本题主要考查函数值域的求解,根据分式函数的性质结合指数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为(  )
A.0B.1C.0或1D.k<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为(  )
A.14+2$\sqrt{3}$B.12+4$\sqrt{3}$C.16+4$\sqrt{3}$D.15+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(m,2),且$\vec a⊥\vec b$,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}=(\sqrt{3}sinx,cosx)$,$\overrightarrow{b}$=(cosx,-cosx),设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-$\frac{1}{2}$,x∈R
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C对边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2$\sqrt{3}$,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A-DBE的体积;
(3)求二面角D-BE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,正方体ABCD-A1B1C1D1中,E为线段B1C的中点,若三棱锥E-ADD1外接球的体积为36π,则正方体的棱长为(  )
A.2B.2$\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设$f(x)=\frac{{{x^2}-1}}{lnx}$
(1)求证:f(x)在(0,1)和(1,+∞)上都是增函数;
(2)设x>0且x≠1,a>$\frac{1}{2}$,求证:af(x)>x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}<0$的解集为$(-1,-\frac{1}{3})∪(\frac{1}{2},1)$,则关于x的不等式$\frac{kx}{ax+1}+\frac{bx+1}{cx+1}<0$的解集为(  )
A.(-2,2)∪(1,3)B.(-3,-1)∪(1,2)C.(-2,3)∪(-1,1)D.(-3,1)∪(-1,2)

查看答案和解析>>

同步练习册答案