精英家教网 > 高中数学 > 题目详情
1.若2a=6,b=log23,则a-b=1.

分析 根据对数的定义和对数的运算性质计算即可.

解答 解:∵2a=6,b=log23
∴a=log26,
∴a-b=log26-log23=log22=1,
故答案为:1

点评 本题考查了对数的定义和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知全集为实数集R,集合A={x|1≤x≤3},B={x|y=log2(x-2)}
(1)求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2$\sqrt{3}$,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A-DBE的体积;
(3)求二面角D-BE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.x,y满足条件$\left\{{\begin{array}{l}{3x-5y+6≥0}\\{2x+3y-15≤0}\\{y≥0}\end{array}}\right.$,则z=x-2y的最小值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设$f(x)=\frac{{{x^2}-1}}{lnx}$
(1)求证:f(x)在(0,1)和(1,+∞)上都是增函数;
(2)设x>0且x≠1,a>$\frac{1}{2}$,求证:af(x)>x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=2,$CD=\sqrt{3}$,PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)在线段PA上是否存在一点M,使二面角M-BC-D的大小为$\frac{π}{6}$,若存在,求$\frac{PM}{PA}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)在x=x0处导数f′(x0)的几何意义是(  )
A.在点x=x0处的斜率
B.在点 ( x0,f ( x0 ) ) 处的切线与x轴所夹的锐角正切值
C.点 ( x0,f ( x0 ) ) 与点 (0,0 ) 连线的斜率
D.曲线y=f(x)在点 ( x0,f ( x0 ) ) 处的切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{3}$,则下列说法正确的是(  )
A.甲获胜的概率是$\frac{1}{6}$B.甲不输的概率是$\frac{1}{2}$
C.乙输了的概率是$\frac{2}{3}$D.乙不输的概率是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα+cosα=$\frac{1}{5}$,α∈(0,π),求$\frac{1}{tanα}$的值.

查看答案和解析>>

同步练习册答案