精英家教网 > 高中数学 > 题目详情

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于数学公式

解:(Ⅰ)
依题意有f'(-1)=0,故
从而
f(x)的定义域为,当时,f'(x)>0;
时,f'(x)<0;
时,f'(x)>0.
从而,f(x)分别在区间单调增加,在区间单调减少.

(Ⅱ)f(x)的定义域为(-a,+∞),
方程2x2+2ax+1=0的判别式△=4a2-8.
(ⅰ)若△<0,即,在f(x)的定义域内f'(x)>0,故f(x)的极值.
(ⅱ)若△=0,则

时,f'(x)=0,
时,f'(x)>0,所以f(x)无极值.
,f(x)也无极值.
(ⅲ)若△>0,即,则2x2+2ax+1=0有两个不同的实根
时,x1<-a,x2<-a,从而f'(x)有f(x)的定义域内没有零点,
故f(x)无极值.
时,x1>-a,x2>-a,f'(x)在f(x)的定义域内有两个不同的零点,
由根值判别方法知f(x)在x=x1,x=x2取得极值.
综上,f(x)存在极值时,a的取值范围为
f(x)的极值之和为
分析:(I)先求函数定义域,然后对函数求导,由题意可得,f′(-1)=0,代入可求a,代入a的值,分别解f′(x)>0,f′(x)<0,求解即可.
(II)由题意可得在区间(-a,+∞)上,f′(x)=0有根,结合一元二次方程根的存在情况讨论该方程的△=4a2-8,求a的取值范围,结合a的取值,把极值点代入函数f(x)可得,
点评:本题考查利用导数研究函数的极值及单调性,解题时若含有参数,要对参数的取值进行讨论,而分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案