精英家教网 > 高中数学 > 题目详情

已知函数(其中).

(1)求函数的单调区间;

(2)若函数上有且只有一个零点,求实数的取值范围.

 

(1)详见解析;(2).

【解析】

试题分析:(1)先求函数的定义域与导数,对是否在定义域内以及在定义域内与进行大小比较,从而确定函数的单调区间;(2)在(1)的条件下结合函数的单调性与零点存在定理对端点值或极值的正负进行限制,从而求出参数的取值范围.

试题解析:(1)函数定义域为

①当,即时,

,得,函数的单调递减区间为

,得,函数的单调递增区间为

②当,即时,

,得,函数的单调递增区间为

,得,函数的单调递减区间为

③当,即时,恒成立,函数的单调递增区间为

(2)①当时,由(1)可知,函数的单调递减区间为单调递增,

所以上的最小值为

由于

要使上有且只有一个零点,

需满足,解得

所以当时,上有且只有一个零点;

②当时,由(1)可知,函数上单调递增,

所以当时,上有且只有一个零点;

③当时,由(1)可知,函数内单调递增,在上单调递减,在上单调递增,

又因为,所以当时,总有

因为

所以

所以在区间内必有零点,

又因为内单调递增,

从而当时,上有且只有一个零点,

综上所述,当时,上有且只有一个零点.

考点:1.函数的单调区间与导数;2.分类讨论;3.函数的零点;4.零点存在定理

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟理科数学试卷(解析版) 题型:选择题

下列命题中,真命题是 ( )

A.

B.

C.“”是“”的充分不必要条件;

D.设为向量,则“”是“”的必要不充分条件

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二理科数学试卷(解析版) 题型:选择题

对于任意两个正整数,定义某种运算“※”,法则如下:当都是正奇数时,=;当不全为正奇数时,=.则在此定义下,集合中的元素个数是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二文科数学试卷(解析版) 题型:填空题

阅读如图所示的程序框图,若输入,则输出的值为______________.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二文科数学试卷(解析版) 题型:选择题

已知向量,且,则等于( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省汕头市高三3月高考模拟考试文科试卷(解析版) 题型:解答题

某工厂生产两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:

B

由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.

(1)求表格中的值;

(2)从被检测的种元件中任取件,求件都为正品的概率.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省汕头市高三3月高考模拟考试文科试卷(解析版) 题型:选择题

”是“关于的不等式组表示的平面区域为三角形”的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省梅州市高三3月总复习质检理科数学试卷(解析版) 题型:填空题

已知函数f(x)=x-[x],其中[x]表示不超过实数x的最大整数,若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是__________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省揭阳市高三4月第二次模拟考试理科数学试卷(解析版) 题型:填空题

在极坐标系中,过点引圆的一条切线,则

切线长为 .

 

查看答案和解析>>

同步练习册答案