精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinx+
3
cosx,x∈R.
(1)求f(x)的最小正周期;
(2)若f(θ)=
6
5
,θ∈(0,π),求tanθ的值.
考点:两角和与差的正弦函数
专题:三角函数的图像与性质
分析:首先将解析式变形逆用两角和与差的正弦公式化简为Asin(ωx+φ)的形式,然后解答周期及求值.
解答: 解:由已知f(x)=sinx+
3
cosx=2sin(
1
2
sinx+
3
2
cosx)=2sin(x+
π
3
);
∴(1)f(x)的最小正周期为2π;
(2)f(θ)=
6
5
=2sin(θ+
π
3
),θ∈(0,π),解得sin(θ+
π
3
)=
3
5
,整理得
cos(θ+
π
3
)=±
4
5

∴tan(θ+
π
3
)=±
3
4

展开解得tanθ=
4
3
-3
4+3
3
或tanθ=
4-3
3
3+4
3
点评:本题考查了利用两角和与差的正弦公式将三角函数解析式化简为y=Asin(ωx+φ)的形式,然后解决性质的有关问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=
ax-1
ax+1
的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

角α的顶点在坐标原点,始边在x轴的非负半轴,终边过点P(4,-3),则cosα的值为(  )
A、4
B、-3
C、
4
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA⊥正方形ABCD所在的平面,垂足为A,连结PB,PC,PD,AC,BD,则互相垂直的平面有(  )
A、5对B、6对C、7对D、8对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
,π].
(1)求
a
b
及|
a
+
b
|;
(2)求函数f(x)=
a
b
+|
a
+
b
|的最大值,并求使函数取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b满足
3a-2b+1≥0
3a+2b-4≥0
a≤1
,则9a2+4b2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)抛物线C2:y2=2px,从每条曲线上取两个点,将其坐标记录于下表中:
x04
2
1
y24
3
2
(1)求C1,C2的标准方程;
(2)四边形ABCD的顶点在椭圆C1上,且对角线AC、BD过原点O,若kAC•kBD=-
2p
a2

(i) 求
OA
OB
的最值.
(ii) 求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公比为q的等比数列,集合A={a1,a2,a3,…,an},从中选出4个不同的数,这样4个数成等比数列共有的组数记为f(n),当f(n)=30时,n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于R上可导的任意函数f(x),若满足(x-2)f′(x)≤0,则必有(  )
A、f(1)+f(3)≤2f(2)
B、f(1)+f(3)≥2f(2)
C、f(1)+f(3)<2f(2)
D、f(1)+f(3)>2f(2)

查看答案和解析>>

同步练习册答案