精英家教网 > 高中数学 > 题目详情
18.数列{an}中,a1=3且an+1=an+2,则数列{$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$}前n项和是(  )
A.n(n+1)B.$\frac{n(n+1)}{2}$C.$\frac{n(n+5)}{2}$D.$\frac{n(n+7)}{2}$

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:∵数列{an}中,a1=3且an+1=an+2,即an+1-an=2.
∴数列{an}是等差数列,首项为3,公差为2.
∴an=3+2(n-1)=2n+1.
∴数列{an}的前n项和=$\frac{n(3+2n+1)}{2}$=n(n+2),
则数列$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$=$\frac{n(n+2)}{n}$=n+2.
∴数列{$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$}是等差数列,首项为3,公差为1.
∴数列{$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$}前n项和=$\frac{n(3+n+2)}{2}$=$\frac{n(n+5)}{2}$.
故选:C.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.计算${∫}_{1}^{2}$($\frac{1}{x}$+x)dx=ln2+$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-l,2),若$m\overrightarrow a+\overrightarrow b$与$\overrightarrow a-2\overrightarrow b$垂直,则m等于$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α∈($\frac{π}{2}$,π),sinα+cosα=$\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}{x>0}\\{y>0}\\{4x+3y<12}\end{array}\right.$,所表示平面区域的整点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+63}{n+3}$,则使得$\frac{{a}_{n}}{{b}_{n}}$为整数的个数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=1-2i,那么$\frac{1}{z}$的共轭复数为(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.-$\frac{1}{5}$-$\frac{2}{5}$iC.-$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{1}{5}$-$\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an=$\frac{4{n}^{2}+k}{2n+1}$,{an}为等差数列.
(1)求k的值及{2an}的前n项和Sn
(2)记bn=$\frac{n{a}_{n}{a}_{n+1}+2}{{a}_{n}{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理科)在等比数列{an}中,a1+a7=65,a3a5=64,且an+1<an,n∈N*
(1)求数列{an}的通项公式;
(2)若Tn=lga2+lga4+…+lga2n,求Tn的最大值及此时n的值.

查看答案和解析>>

同步练习册答案