精英家教网 > 高中数学 > 题目详情
7.已知an=$\frac{4{n}^{2}+k}{2n+1}$,{an}为等差数列.
(1)求k的值及{2an}的前n项和Sn
(2)记bn=$\frac{n{a}_{n}{a}_{n+1}+2}{{a}_{n}{a}_{n+1}}$,求{bn}的前n项和Tn

分析 (1)通过化简可知an=2n-1+$\frac{k+1}{2n+1}$,进而可知k=-1,通过$\frac{{2}^{{a}_{n+1}}}{{2}^{{a}_{n}}}$可知数列{${2}^{{a}_{n}}$}是公比为4的等比数列,进而计算可得结论;
(2)通过化简、裂项可知bn=n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加即得结论.

解答 解:(1)an=$\frac{4{n}^{2}+k}{2n+1}$=$\frac{4{n}^{2}-1+k+1}{2n+1}$=2n-1+$\frac{k+1}{2n+1}$,
∵{an}为等差数列,
∴k+1=0,即k=-1,
∴an=$\frac{4{n}^{2}-1}{2n+1}$=2n-1,
∵${2}^{{a}_{n}}$=22n-1
∴$\frac{{2}^{{a}_{n+1}}}{{2}^{{a}_{n}}}$=$\frac{{2}^{2n+1}}{{2}^{2n-1}}$=4,
即数列{${2}^{{a}_{n}}$}是公比为4的等比数列,且${2}^{{a}_{1}}$=2,
∴Sn=$\frac{2(1-{4}^{n})}{1-4}$=$\frac{2}{3}$•4n-$\frac{2}{3}$;
(2)∵an=2n-1,
∴bn=$\frac{n{a}_{n}{a}_{n+1}+2}{{a}_{n}{a}_{n+1}}$=n+$\frac{2}{{a}_{n}{a}_{n+1}}$
=n+$\frac{2}{(2n-1)(2n+1)}$
=n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=[1+(1-$\frac{1}{3}$)]+[2+($\frac{1}{3}$-$\frac{1}{5}$)]+…+[n+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)]
=(1+2+…+n)+[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)]
=$\frac{n(n+1)}{2}$+1-$\frac{1}{2n+1}$.

点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)设0<a<1,0<θ<$\frac{π}{4},x={(sinθ)^{{{log}_a}sinθ}},y={(cosθ)^{{{log}_a}tanθ}}$.则x,y的大小关系为x<y
(2)已知对x∈R,当b>0时acosx+bcos2x≥-1恒成立,求(a+b)max

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}中,a1=3且an+1=an+2,则数列{$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$}前n项和是(  )
A.n(n+1)B.$\frac{n(n+1)}{2}$C.$\frac{n(n+5)}{2}$D.$\frac{n(n+7)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{6}{x}$-log2x,则在下列区间中,函数f(x)有零点的是(  )
A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点A(2,3),且与直线x-y-1=0垂直的直线方程是x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=$\frac{cosx}{x}$在$(\frac{π}{2},0)$处的切线斜率为(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{2}{π}$D.-$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设实数a,b,c≠0,$\frac{bc}{a},\frac{ca}{b},\frac{ab}{c}$成等差数列,则下列不等式一定成立的是(  )
A.|b|≤|ac|B.|b|≥$\sqrt{\frac{|a|+|c|}{2}}$C.|b|≥$\sqrt{\frac{{{{|a|}^2}+{{|c|}^2}}}{2}}$D.|b|≤$\frac{|a|+|c|}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知线段AB长为8,C、D是线段AB上任意两点,则AC>CD的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知O为坐标原点,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,直线l:x=$\frac{{a}^{2}}{c}$与双曲线的一条渐近线交于点A,且△OAF的面积为$\frac{{a}^{2}}{2}$,则该双曲线的两条渐近线的夹角大小为90°.

查看答案和解析>>

同步练习册答案