精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\left\{\begin{array}{l}-{x^2},\;\;\;\;\;x≥0\\{2^x},\;\;\;\;\;x<0\end{array}\right.$,则f(-log23)=$\frac{1}{3}$;若$f(f(x))=\frac{1}{2}$,则x=1.

分析 由分段函数定义得f(-log23)=${2}^{-lo{g}_{2}3}$,由此能求出结果.由$f(f(x))=\frac{1}{2}$,得当x≥0时,f(x)=-x2,f(f(x))=f(-x2)=${2}^{-{x}^{2}}$=$\frac{1}{2}$;当x<0时,f(x)=2x,f(f(x))=f(2x)=-(2x2,由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}-{x^2},\;\;\;\;\;x≥0\\{2^x},\;\;\;\;\;x<0\end{array}\right.$,
∴f(-log23)=${2}^{-lo{g}_{2}3}$=$\frac{1}{{2}^{lo{g}_{2}3}}$=$\frac{1}{3}$.
∵$f(f(x))=\frac{1}{2}$,
∴当x≥0时,f(x)=-x2,f(f(x))=f(-x2)=${2}^{-{x}^{2}}$=$\frac{1}{2}$,解得x=±1,∴x=1;
当x<0时,f(x)=2x,f(f(x))=f(2x)=-(2x2=-22x=$\frac{1}{2}$,无解.
综上,x=1.
故答案为:$\frac{1}{3},1$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函定义、对数性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.用列表法表示函数f(x),g(x)如下:
x123
 f(x)131
x123
g(x)321
则满足f[g(x)]<g[f(x)]的x的值为(  )
A.1或3B.3或2C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$DC=1,点E在线段PB上,且EB=$\frac{1}{2}$PE.试用向量法解决如下问题:
(1)求证:PD∥平面AEC.
(2)求锐二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是(  )
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的两个焦点,点P在双曲线上且满足|PF1|•|PF2|=32,则∠F1PF2是(  )
A.钝角B.直角C.锐角D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,斜三棱柱ABC-A1B1C1,面AA1B1B⊥面ABC,且∠A1AB=60°,AA1=2,△ABC为边长为2的等边三角形,G为△ABC的重心,取BC中点F,连接B1F与BC1交于E点:
(1)求证:GE∥面AA1B1B;  
(2)求三棱锥B-B1EA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把3个不同的球放入3个不同的盒子中,恰有一个空盒的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四面体P-ABC中,PA=4,AC=2$\sqrt{7}$,PB=BC=2$\sqrt{3}$,PA⊥平面PBC,则四面体P-ABC的外接球半径为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确的是(  )
A.矩形的平行投影一定是矩形
B.梯形的平行投影一定是梯形
C.两条相交直线的投影可能平行
D.一条线段中点的平行投影仍是这条线段投影的中点

查看答案和解析>>

同步练习册答案