精英家教网 > 高中数学 > 题目详情
19.F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的两个焦点,点P在双曲线上且满足|PF1|•|PF2|=32,则∠F1PF2是(  )
A.钝角B.直角C.锐角D.以上都有可能

分析 根据双曲线的标准方程求出焦点坐标,结合余弦定理进行求解即可.

解答 解:由双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$知F1(-5,0),F2(5,0),则|F1F2|=10;
点P在双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$上,不妨设点P在右支上,
则|PF1|-|PF2|=6,
平方得${({|P{F_1}|-|P{F_2}|})^2}=36$,
即$|P{F_1}{|^2}-2|P{F_1}||P{F_2}|+|P{F_2}{|^2}=36$;
因为|PF1||PF2|=32,所以$|P{F_1}{|^2}+|P{F_2}{|^2}=100$,
又由余弦定理得$cos∠{F_1}P{F_2}=\frac{{|P{F_1}{|^2}+|P{F_2}{|^2}-|{F_1}{F_2}{|^2}}}{{2|P{F_1}||P{F_2}|}}=\frac{100-100}{{2|P{F_1}||P{F_2}|}}=0$,
即cos∠F1PF2=0,所以∠F1PF2=90°.
故选:B.

点评 本题主要考查双曲线的性质的应用,根据双曲线的定义结合余弦定理是解决本题的关键.考查学生的运算和转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.命题“对于?n∈N,n2>0”的否定为(  )
A.对于?n∈N,n2<0B.?n0∈N,n2>0C.对于?n∈N,n2≤0D.?n0∈N,n2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2+x-2<0},N={x|log2x<1},则M∩N=(  )
A.(-2,1)B.(-1,2)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的前n项和为Sn,S5=35,S9=117,则a4=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{\begin{array}{l}-{x^2},\;\;\;\;\;x≥0\\{2^x},\;\;\;\;\;x<0\end{array}\right.$,则f(-log23)=$\frac{1}{3}$;若$f(f(x))=\frac{1}{2}$,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-aex
(1)若函数g(x)=f(x)+f′(x)在点(0,g(0))处的切线方程为x+y+1=0,求实数a的值;
(2)当a>0时,函数f(x)存在两个零点x1,x2,且x1<x2,求证:lnx1-lnx2<lna+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y=x2+bx+c在点(1,2)处的切线与直线y=x-2平行,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=clnx+$\frac{1}{2}$x2+bx(b,c∈R,c≠0)且x=1为f(x)的极值点.
(1)若在曲线以g(c)=f(x)-$\frac{1}{2}$x2上点(1,g(1))处的切线过点(2,0),求b,c的值;
(2)若f(x)=0恰有两解,求实数c的取值范围.

查看答案和解析>>

同步练习册答案