精英家教网 > 高中数学 > 题目详情
17.若直线y=kx-2与抛物线y2=8x交于A,B两点,且AB中点的横坐标为2,求此直线方程.

分析 联立直线y=kx-2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2,进而得到直线方程.

解答 解:联立直线y=kx-2与抛物线y2=8x,
消去y,可得k2x2-(4k+8)x+4=0,(k≠0),
判别式(4k+8)2-16k2>0,解得k>-1.
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{4k+8}{{k}^{2}}$,
由AB中点的横坐标为2,
即有$\frac{4k+8}{{k}^{2}}$=4,
解得k=2或-1(舍去),
则有直线方程为y=2x-2.

点评 本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知sinx=-$\frac{2}{5}$,x∈[-π,π],则x=(  )
A.arcsin-$\frac{2}{5}$B.arcsin$\frac{2}{5}$或(arcsin$\frac{2}{5}$)+π
C.arcsin$\frac{2}{5}$D.arcsin(-$\frac{2}{5}$)或arcsin$\frac{2}{5}$-π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线C:y2=4x的焦点为F,点K是C的准线l和x轴的交点,P在C上运动,则满足条件$\overrightarrow{FM}$=$\overrightarrow{FK}$+$\overrightarrow{FP}$的动点M的轨迹方程是y2=4(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=4y上的一点M到此抛物线的焦点的距离为3,则点M的纵坐标是(  )
A.0B.$\frac{1}{2}$C.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线x2=8y的准线方程是(  )
A.x=$\frac{1}{32}$B.y=2C.y=$\frac{1}{32}$D.y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若直线y=kx-2与抛物线y2=3x交于A,B两点,且AB中点的横坐标为2,求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=(x-2)ex的单调递增区间是(  )
A.(-∞,1)B.( 0,2 )C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=(x-3)ex的单调递增区间是(  )
A.(-∞,-2)B.(1,4)C.(0,3)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)解不等式:|2x-1|-|x|<1;
(2)设a2-2ab+5b2=4对?a,b∈R成立,求a+b的最大值及相应的a,b.

查看答案和解析>>

同步练习册答案