精英家教网 > 高中数学 > 题目详情
11.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则$\frac{sinα+cosα}{sinα-cosα}$的值等于3.

分析 根据三角函数的定义,结合同角三角函数关系进行化简即可.

解答 解:∵终边在直线y=2x上,
则tanα=$\frac{y}{x}$=2,
∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3,
故答案为:3.

点评 本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好两人都支持“生育二胎放开”的概率是多少?
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角x始边与x轴的非负半轴重合,与圆x2+y2=4相交于点A,终边与圆x2+y2=4相交于点B,点B在x轴上的射影为C,△ABC的面积为S(x),函数y=S(x)的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一块边长为8cm的正方形铁板按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为(  )
A.$\frac{{2\sqrt{3}}}{5}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在体积为$\sqrt{3}$的三棱锥S-ABC中,AB=BC=2,∠ABC=120°,SA=SC,且平面SAC⊥平面ABC,若该三棱锥的四个顶点都在同一球面上,则该球的体积为(  )
A.$\frac{20\sqrt{5}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.20πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列0,$\frac{2}{3}$,$\frac{4}{5}$,$\frac{6}{7}$,…的一个通项公式为(  )
A.an=$\frac{n-1}{n+1}$  (n∈N*B.an=$\frac{n-1}{2n+1}$  (n∈N*
C.an=$\frac{2n}{2n+1}$ (n∈N*D.an=$\frac{2(n-1)}{2n-1}$ (n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(文科做)$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(3$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,则$\frac{sin2x}{1+cos2x}$的值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直三棱柱ABC-A1B1C1中,BC=4,∠BAC=90°,AA1=2,则此三棱柱外接球的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,此时四面体ABCD的外接球的表面积为7π.

查看答案和解析>>

同步练习册答案