精英家教网 > 高中数学 > 题目详情
命题:?x0∈R,x02+2x0+2<0的否定
 
考点:命题的否定,特称命题
专题:概率与统计
分析:存在性命题”的否定一定是“全称命题”.
解答: 解:∵“特称命题”的否定一定是“全称命题”,
∴:?x0∈R,x02+2x0+2<0的否定是:
?x∈R,x2+2x+2≥0.
故答案为:?x∈R,x2+2x+2≥0.
点评:命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通项公式;
2)若cn=anbn,{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
-alnx.(a∈R)
(1)当a=-1时,试确定函数f(x)在其定义域内的单调性;
(2)求函数f(x)在(0,e)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=2+t
y=-1-t
(t为参数),则直线l被曲线C截得的线段长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)定义域为[1,2],则f(2x+1)定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“?x∈R,5x+3>m”为真命题,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱的底面边长为2,高为2,则它的外接球表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,
CB
=3
BF
,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1左、右焦点分别为F1,F2,过点F2作与x轴垂直的直线与双曲线一个交点为P,且∠PF1F2=
π
6
,则双曲线的渐近线方程为(  )
A、y=±
2
2
x
B、y=±
2
x
C、y=±
1
2
x
D、y=±x

查看答案和解析>>

同步练习册答案