【题目】在直角坐标平面中,△ABC的两个顶点A、B的坐标分别为A(﹣1,0),B (1,0),平面内两点G、M同时满足下列条件:(1)
;(2)
;(3)
∥
,则△ABC的顶点C的轨迹方程为_____.
【答案】x2
1(y≠0)
【解析】
由题目给出的条件,分别得到G为三角形ABC的重心,M为三角形ABC的外心,设出G点坐标,由
,可知M和G具有相同的纵坐标,由重心坐标公式得到C点的坐标,然后由M到A和C的距离相等列式可得G的轨迹方程,利用代入法转化为C的轨迹方程.
解:由
得,G为重心,
由
得,M为外心.
所以M点在y轴上(M到AB两点距离相等).
又
,则
.
设M为(0,y),G为(x,y)(y≠0),由重心坐标公式得C为(3x,3y).
再由MA=MC,得
整理得:9x2+3y2=1①.
再设c(x',y'),由3x=x',3y=y'得x
,y
.
代入①得:(x′)2
1.
所以△ABC的顶点C的轨迹方程为
,
.
故答案为:
,
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).设直线
与
的交点为
,当
变化时的点
的轨迹为曲线
.
(1)求出曲线
的普通方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设射线
的极坐标方程为
且
,点
是射线
与曲线
的交点,求点
的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
为等边三角形,且垂直于底面
,
,
分别是
的中点.
![]()
(1)证明:平面
平面
;
(2)已知点
在棱
上且
,求直线
与平面
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,侧面PAD是等边三角形,且平面
平面ABCD,
,
.
![]()
(1)AD上是否存在一点M,使得平面
平面ABCD;若存在,请证明,若不存在,请说明理由;
(2)若
的面积为
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数
.
。若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
平面ABCD,
,
,
,
,
,
.
![]()
(1)证明:
;
(2)求二面角
的余弦值;
(3)设Q为线段PD上的点,且直线AQ和平面PAC所成角的正弦值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂在制造产品时需要用到长度为698mm的A型和长度为518mm的B型两种钢管,工厂利用长度为4000mm的钢管原材料,裁剪成若干A型和B型钢管。假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)有两种裁剪方案的废料率小于4.5%,请说明这两种方案并计算它们的废料率;
(2)工厂现有100根原材料钢管,一根A型和一根B型钢管为一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最终的废料率为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的
,输出的
,则判断框中可以填( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com