精英家教网 > 高中数学 > 题目详情
20.若x∈R,则“-2≤x≤3”是“|x|<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用充分条件和必要条件的定义进行判断.

解答 解:由|x|<2,得-2<x<2,
“-2≤x≤3”是“|x|<2”必要不充分条件.
故选B.

点评 本题主要考查充分条件和必要条件的判断和应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.四棱锥P-ABCD中,PC=AB=1,BC=a,∠ABC=60°,底面ABCD为平行四边形,PC⊥平面ABCD,点M,N分别为AD,PC的中点.
(1)求证:MN∥平面PAB;
(2)若∠PAB=90°,求二面角B-AP-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{a}{x}$+lnx-1.
(1)当a=2时,求f(x)在(1,f(1))处的切线方程;
(2)若a>0,且对x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x≤-1或x≥3},B={x|1≤x≤6},C={x|m+1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若B∪C=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,若△ABC最长边为$\sqrt{10}$,则最短边长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过椭圆$\frac{{y}^{2}}{9}$+x2=1内的一点P($\frac{1}{2}$,$\frac{1}{2}$)的弦,恰好被点P平分,则这条弦所在的直线方程为(  )
A.9x-y-4=0B.x+y+5=0C.2x+y-2=0D.9x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设曲线y=a(x-1)-lnx在点(1,0)处的切线方程为y=2x-2,则a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=(1-ax)ln(x+1)-bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.
(1)求常数b的值;
(2)当a=1时,讨论函数f(x)的单调性;
(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设两正数a,b(a≠b)满足a2+ab+b2=a+b,则a+b的取值范围是(  )
A.(1,+∞)B.(1,$\frac{4}{3}$)C.[1,$\frac{4}{3}$]D.(0,1)

查看答案和解析>>

同步练习册答案