精英家教网 > 高中数学 > 题目详情
5.过椭圆$\frac{{y}^{2}}{9}$+x2=1内的一点P($\frac{1}{2}$,$\frac{1}{2}$)的弦,恰好被点P平分,则这条弦所在的直线方程为(  )
A.9x-y-4=0B.x+y+5=0C.2x+y-2=0D.9x+y-5=0

分析 设过点P的弦与椭圆交于A,B两点,并设出他们的坐标,代入椭圆方程联立,两式相减,根据中点P的坐标可知x1+x2和y1+y2的值,进而求得直线AB的斜率,根据点斜式即可求得直线的方程.

解答 解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,
∴$\left\{\begin{array}{l}{\frac{{y}_{1}^{2}}{9}+{x}_{1}^{2}=1}\\{\frac{{y}_{2}^{2}}{9}+{x}_{2}^{2}=1}\end{array}\right.$,两式相减可得:$\frac{{(y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$+(x1+x2)(x1-x2)=0,
由中点坐标公式可得:x1+x2=1,y1+y2=1,
∴y1-y2=-9(x1-x2),
由k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-9,
∴弦所在的直线方程y-$\frac{1}{2}$=-9(x-$\frac{1}{2}$),整理得:9x+y-5=0,
故选:D.

点评 本题主要考查了椭圆的简单性质和直线与椭圆的位置关系,考查弦长的中点坐标公式,考查“点差法”应用,直线的点斜式方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x);当0≤x≤1时,f(x)=$\frac{1}{2}$x;令g(x)=f(x)+$\frac{1}{2}$,则函数g(x)在区间[-10,10]上所有零点之和为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题是公理的是(  )
A.直线和直线外一点确定一个平面
B.过不在一条直线上的三点,有且只有一个平面
C.空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
D.平行于同一个平面的两个平面相互平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,已知a1+a7=22,a4+a10=40,则公差d=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x∈R,则“-2≤x≤3”是“|x|<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列叙述正确的有(  )
①集合A={(x,y)|x+y=5},B={(x,y)|x-y=-1},则A∩B={2,3}
②若函数f(x)=$\frac{4-x}{a{x}^{2}+x-3}$的定义域为R,则实数a<-$\frac{1}{12}$
③函数f(x)=x-$\frac{1}{x}$,x∈(-2,0)是奇函数
④函数f(x)=-x2+3x+b在区间(2,+∞)上是减函数.
A.①③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正项等比数列{an}满足a2+a4=3,a3a5=2,则该数列的公比q=$\sqrt{\frac{3\sqrt{2}+2}{7}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,棱长为1的正方体ABCD-A1B1C1D1中,E,F是侧面对角线BC1,AD1上一点,若BED1F是菱形,则其在底面ABCD上投影的四边形面积(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{3-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项的和Sn=n2+2n,数列{bn}是正项等比数列,且满足a1=2b1,b3(a3-a1)=b1,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=$\frac{1}{3}{a_n}{b_n}$,求数列{cn}的前n项和.

查看答案和解析>>

同步练习册答案