精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|x≤-1或x≥3},B={x|1≤x≤6},C={x|m+1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若B∪C=B,求实数m的取值范围.

分析 (Ⅰ)由条件和交集的运算求出A∩B,由补集的运算求出∁RA,由并集的运算求出(∁RA)∪B;
(Ⅱ)由并集的运算将B∪C=B转化为C⊆B,根据条件和子集的定义分类讨论,分别列出不等式(组),求出m的取值范围.

解答 解:(Ⅰ)∵集合A={x|x≤-1或x≥3},B={x|1≤x≤6},
∴A∩B={x|3≤x≤6},且∁RA={x|-1<x<3},
∴(∁RA)∪B={x|-1<x≤6};         …(6分)
(Ⅱ)∵B∪C=B,∴C⊆B,
即C={x|m+1≤x≤2m}⊆{x|1≤x≤6},
①当C=∅时,有m+1>2m,解得m<1,
②当C≠∅时,有$\left\{\begin{array}{l}{m+1≤2m}\\{m+1≥1}\\{2m≤6}\end{array}\right.$,解得1≤m≤3,
综上所述:m的取值范围是(-∞,1)∪[1,3],即(-∞,3].…(12分)

点评 本题考查交、并、补集的混合运算,以及集合之间的关系的应用,考查分类讨论思想、转化思想,注意空集是任何集合的子集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若集合A={x|0<x<2},B={x|-1<x<1},则(∁RA)∩B=(  )
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点A($\sqrt{2}$,1)是椭圆上的一点,且椭圆C的离心率为$\frac{{\sqrt{2}}}{2}$,直线AO与椭圆C交于点B,且C,D是椭圆上异于A,B的任意两点,直线AC,BD相交于点M,直线AD,BC相交于点N.
(1)求椭圆C的方程;
(2)求证:直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题是公理的是(  )
A.直线和直线外一点确定一个平面
B.过不在一条直线上的三点,有且只有一个平面
C.空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
D.平行于同一个平面的两个平面相互平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{{\sqrt{2}-i}}{{1+\sqrt{2}i}}$=(  )
A.iB.-iC.$2\sqrt{2}-i$D.$-2\sqrt{2}+i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,已知a1+a7=22,a4+a10=40,则公差d=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x∈R,则“-2≤x≤3”是“|x|<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正项等比数列{an}满足a2+a4=3,a3a5=2,则该数列的公比q=$\sqrt{\frac{3\sqrt{2}+2}{7}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)若$\frac{a_n}{b_n}$=$\frac{2n+3}{n+1}$,求证:$\frac{5}{6}$≤$\frac{1}{b_1}$+$\frac{1}{b_2}$+…+$\frac{1}{b_n}$<1.

查看答案和解析>>

同步练习册答案