精英家教网 > 高中数学 > 题目详情
函数y=cosx(sinx+cosx)的最小正周期为(  )
A、
π
4
B、
π
2
C、π
D、2π
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:计算题,函数的性质及应用
分析:利用两角和的正弦公式,二倍角公式,把函数y化为
1
2
+
2
2
sin(2x+
π
4
),可得它的最小正周期等于π.
解答: 解:函数y=cosx(sinx+cosx)=cos2x+sinxcosx
=
1
2
(1+cos2x)+
1
2
sin2x
=
1
2
+
2
2
sin(2x+
π
4
),
故它的最小正周期等于
2
=π,
故选C.
点评:本题考查两角和的正弦公式,二倍角公式,正弦函数的周期性,把函数化为一个角的一个三角函数,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
4
-
y2
3
=1的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x+4,则函数f-1(x+1)的解析式为(  )
A、
x-7
3
B、
x-5
3
C、
x-4
3
D、
x-3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
1
3
x3-
1
2
x2-2x-m=0有三个不等实根,则m的取值范围是(  )
A、(-
10
3
7
6
B、(-
7
6
10
3
C、(7,20)
D、(-
13
6
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a
-y2=1的一条渐近线与圆(x-2)2+y2=2相交于M,N两点,且|MN|=2,则此双曲线的离心率为(  )
A、
3
B、
2
3
3
C、
3
3
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx+
4-x
的定义域为(  )
A、[0,4]
B、(0,4]
C、[1,4]
D、[1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在y轴上的截距是2,且与x轴平行的直线方程为(  )
A、y=2B、y=-2
C、x=2D、y=2或y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3-x2+x-6在(-∞,+∞)上既有极大值又有极小值,则a的取值范围为(  )
A、a>0
B、a<0
C、a>
1
3
D、a<
1
3
,a≠0

查看答案和解析>>

同步练习册答案