精英家教网 > 高中数学 > 题目详情
函数f(x)=ax3-x2+x-6在(-∞,+∞)上既有极大值又有极小值,则a的取值范围为(  )
A、a>0
B、a<0
C、a>
1
3
D、a<
1
3
,a≠0
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:计算题,导数的概念及应用
分析:先求导函数,根据函数在区间(-∞,+∞)内既有极大值,又有极小值,故导函数为0的方程有不等的实数根,可求实数a的取值范围.
解答: 解:求导函数:f′(x)=3ax2-2x+1,
∵函数f(x)=ax3-x2+x-6既有极大值又有极小值,
∴a≠0,且△=4-12a>0,∴a<
1
3
且a≠0.
故选:D.
点评:本题的考点是函数在某点取得极值的条件,主要考查学生利用导数研究函数极值的能力,关键是将问题转化为导函数为0的方程有不等的实数根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=cosx(sinx+cosx)的最小正周期为(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

以下有四种说法,其中正确说法的个数为(  )
(1)“m是实数”是“m是有理数”的充分不必要条件;
(2)“a>b”是“a2>b2”的充要条件;
(3)“x=3”是“x2-2x-3=0”的必要不充分条件;
(4)“A∩B=B”是“B=ϕ”的必要不充分条件.
A、3个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2的单调减区间是(  )
A、[0,+∞)
B、(-∞,0]
C、(-∞,0)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c,若(
3
b-c)cosA=acosC,则cosA=(  )
A、
1
2
B、
3
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

各项都是正数的等比数列{an}的公比q≠1,且a2
1
2
a3,a1成等差数列,则
a2+a 3+a4
a3+a4+a5
的值为(  )
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

将全体正整数对(x,y)(x,y∈N*)按如下规律排列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2)、(3,1)、(1,4)、(2,3)、(3,2)、(4,1)、(1,5)、(2,4)、(3,3)…,则第2014个正整数对为(  )
A、(61,3)
B、(62,2)
C、(62,3)
D、(63,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足lgx+lgy=2,则x+4y的最小值是(  )
A、100B、40C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1+i(i是虚数单位)
(1)若ω=z2+3
.
z
-1,求|ω|
(2)若
z2+az+b
z2-z+1
=1-i(a,b∈R),求a,b的值.

查看答案和解析>>

同步练习册答案