精英家教网 > 高中数学 > 题目详情
20.盈不足术是我国古代数学中的优秀算法.《九章算术》卷七--盈不足,有下列问题:
(1)今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?
(2)今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?

分析 (1)由题意,设人数是x人,物价为y元,则x应满足条件8x-3=7x+4.因此,可以让x从1开始检验,若条件不成立,则x递增1,一直到x满足条件为止,由此可得程序.
(2)由题意,设人数为x,鸡价为y元,则x应满足条件9x-11=6x+16.因此,可以让x从1开始检验,若条件不成立,则x递增1,一直到x满足条件为止,由此可得程序.

解答 解:翻译为现代语言,即:
(1)一些人共同买东西,每人出八元钱,则多三元钱,每人出七元钱,则少四元钱.问有多少钱,物价又是多少?
设人数是x人,物价为y元,则$\left\{\begin{array}{l}{8x-3=y}\\{7x+4=y}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=7}\\{y=53}\end{array}\right.$故共有七人,物价为五十三元.
相应的程序为:
i=1;
while i<=1 000
while 8*i-3<>7*i+4
i=i+1;
end
y=8*i-3;
print(% io (2),i,“people:”,y,“price:”);
end
(2)类似于(1)的研究,设人数为x,鸡价为y元,则$\left\{\begin{array}{l}{9x-11=y}\\{6x+16=y}\end{array}\right.$
解得$\left\{\begin{array}{l}{x=9}\\{y=70}\end{array}\right.$故共有9人,鸡价为70元.
相应的程序为:
i=1,n=1 000;
while i<=n
while  9*i-11<>6*i+16
i=i+1;
end
y=9*i-11;
print(% io(2),i,“people:”,y,“price:”);
end

点评 本题考查设计程序解决实际问题,考查学生操作能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.“m>0,n<0”是“方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示双曲线”的(  )
A.必要但不充分条件B.充分但不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知f(${\frac{2}{x}$+2)=x+1,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和为Sn,且Sn+bn=2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=$\frac{a_n}{b_n}$(n∈N*),Tn为数列{cn}的前n项和,求Tn
(Ⅲ)若dn=$\frac{{{T_{n+2}}-3}}{{2({T_{n+1}}-3)}}$(n∈N*),求dn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1]时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设A,B是非空集合,定义A?B={x|x∈A∪B且x∉A∩B}.已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},则M?N=(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题是(  )
A.?x∈R,2x>x2B.若a>b,c>d,则 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C:(x-1)2+y2=$\frac{11}{2}$内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当直线l的斜率k=1时,求弦AB的长.

查看答案和解析>>

同步练习册答案