精英家教网 > 高中数学 > 题目详情
△ABC中a、b、c分别是角A、B、C的对边,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n
=0.
(1)求角B的大小;
(2)设f(x)=2sinxcosxcos(A+C)-
3
2
cos2x,求f(x)的周期及当f(x)取得最大值时的x的值.
考点:三角函数中的恒等变换应用,平面向量的综合题
专题:综合题
分析:(1)利用向量的数量积及正弦定理,即可求得角B的大小;
(2)利用辅助角公式化简函数,再利用正弦函数的性质求函数f(x)的最小正周期,最大值及当f(x)取得最大值时x的值.
解答: 解:(1)∵
m
=(2a+c,b),
n
=(cosB,cosC)
,且
m
n
=0

∴(2a+c)cosB+bcosC=0
∴2acosB+ccosB+bcosC=0
由正弦定理得2sinAcosB+sinCcosB+cosCsinB=0(2分)
即2sinAcosB+sin(C+B)=0,
∴sinA(2cosB+1)=0,(4分)
在△ABC中,sinA≠0,∴2cosB+1=0,
∵B∈(0,π),∴B=
2
3
π
(6分)
(2)∵B=
2
3
π
,∴A+C=
π
3

f(x)=
1
2
sin2x-
3
2
cos2x=sin(2x-
π
3
)
(8分)
所以f(x)的最小正周期为π(10分)
2x-
π
3
=2kπ+
π
2
,k∈Z
,得x=kπ+
5
12
π(k∈Z)

即当x=kπ+
5
12
π(k∈Z)
,时f(x)取最大值1       (12分)
点评:本题考查解三角形与三角函数的综合,考查向量知识与正弦定理的运用,考查三角函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°
.M是PD的中点.
(1)证明PB∥平面MAC;
(2)证明平面PAB⊥平面ABCD;
(3)求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x∈R|0<x≤2},B={x∈R|x2-x-2>0},则A∩(CRB)=(  )
A、(-1,2)
B、[-1,2]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界数列”.
(1)设数列an=2n+1,请写出一个公比不为1的等比数列{bn},使数列{bn}是数列{an}的“下界数列”;
(2)设数列an=2n2-3n+10,bn=
n+2
2n-7
,求证数列{bn}是数列{an}的“下界数列”;
(3)设数列an=
1
n2
bn=
7,n=1
7
n
-
7
n-1
,n≥2
,n∈N*,构造Tn=(1-a2)(1-a3)…(1-an),Pn=(1+b1)+(1+b2)+…+(1+bn),求使Tn≤kPn对n≥2,n∈N*恒成立的k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+y2+(λ-1)x+2λy+λ=0表示圆,则λ的取值范围是(  )
A、λ>0
B、
1
5
≤λ≤1
C、λ>1或λ<
1
5
D、λ∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x2+y2=1交于P,Q两点.若|PQ|=
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,首项为1的等比数列{bn}的公比为q,S2=a3=b3,且a1,a3,b4成等比数列.
(I)求{an}和{bn}的通项公式;
(II)设cn=k+an+log3bn(k∈
N
 
+
),若
1
c1
1
c2
1
ct
(t≥3)
成等差数列,求k和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

多项式1-a2-b2+2ab分解因式的结果是(  )
A、(1-a-b)(1+a+b)
B、(1+a-b)(1-a+b)
C、(a+b+1)(a-b-1)
D、-(a-b+1)(a+b-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=ex+1与曲线y=ex+a相切(e是自然对数的底数),则a的值是(  )
A、e
B、
1
e
C、e+1
D、1

查看答案和解析>>

同步练习册答案