精英家教网 > 高中数学 > 题目详情
9.比较大小:sin1,sin2,sin3,sin4,sin5,sin6.

分析 先把题设中的弧度转化成角度,进而根据正弦函数的单调性判断出三者的大小.

解答 解:sin1≈sin57°=sin123°,sin2≈sin114°,sin3≈sin171°,sin4≈sin228°=-sin48°=-sin132°,sin5≈sin285°=-sin105°,sin6≈sin342°=-sin162°
根据正弦函数在90°到180°上单调减,得到sin114°>sin123°>sin171°>0>-sin105°>-sin132°>-sin162°
故sin6<sin4<sin5<sin3<sin1<sin2.

点评 本题主要考查了正弦函数的单调性,弧度与角度的互化.考查了基础知识的综合运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若Sn是公差不为0的等差数{an}的前n项和,且S1,S2,S4成等比例数列.
(Ⅰ)求等数列S1,S2,S4的公比;
(Ⅱ)若S2=4,设bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn$<\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合P={x|x>1},Q={x||x|>0},则下列结论正确的是(  )
A.P=QB.P∪Q=RC.P?QD.Q?P

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若等式$\sqrt{\frac{1-sinx}{1+sinx}}$=tanx-secx恒成立,则x的取值范围是{x|2kπ+$\frac{π}{2}$<x<2kπ+$\frac{3π}{2}$,k∈z}..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A(-3,2),B(0,-2),则|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.Sn是等差数列{an}的前n项和,a3+a6+a12为一个常数,则下列也是常数的是(  )
A.S17B.S15C.S13D.S7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx+c(a,b为常数),且有x=1的切线为y=$-\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$\left\{\begin{array}{l}{x+k(1-{a}^{2}),(x≥0)}\\{{x}^{2}-4x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为(  )
A.k≤0B.k≥8C.0≤k≤8D.k≤0或k≥8

查看答案和解析>>

同步练习册答案