精英家教网 > 高中数学 > 题目详情
20.设集合P={x|x>1},Q={x||x|>0},则下列结论正确的是(  )
A.P=QB.P∪Q=RC.P?QD.Q?P

分析 化简Q得Q={x|x≠0},比较集合P、Q即可.

解答 解:∵Q={x||x|>0}={x|x≠0},P={x|x>1},
∴P≠Q,P∪Q=Q,P?Q,
故选:C.

点评 本题考查集合间的关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.“a=b”是“直线y=x+2与圆(x-a)2+(y-b)2=2相切”的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的M的值是(  )
A.2B.$\frac{1}{2}$C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=|mx|-|x-1|(m>0),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为(  )
A.0<m≤1B.$\frac{4}{3}$≤m<$\frac{3}{2}$C.1<m<$\frac{3}{2}$D.$\frac{3}{2}$≤m<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若角α的边过点P(-3,-4),则sin2α的值为$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,三边的长分别是$\sqrt{a},\sqrt{b},\sqrt{c}$,若a2+b2=c2,则△ABC的形状是(  )
A.直角三角形B.钝角三角形
C.锐角三角形D.直角或锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}是首项为2的等差数列,其前n项和Sn满足4Sn=an•an+1.数列{bn}是以$\frac{1}{2}$为首项的等比数列,且b1b2b3=$\frac{1}{64}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,若对任意n∈N*不等式$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}≥\frac{1}{4}λ-\frac{1}{2}{T_n}$恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.比较大小:sin1,sin2,sin3,sin4,sin5,sin6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=p(x-$\frac{1}{x}$)-2lnx,g(x)=$\frac{2e}{x}$(p是实数,e是自然对数的底数)
(1)若对任意x∈[2,e],不等式f(x)>g(x)恒成立,求p的取值范围;
(2)若存在x0∈[2,e],使不等式f(x0)>g(x0)成立,求p的取值范围;
(3)若p>1,且对任意x1∈[2,e],x2∈[2,e],使不等式f(x1)>g(x2)恒成立,求p的取值范围;
(4)若p>1,且存在x1∈[2,e],x2∈[2,e],使不等式f(x1)>g(x2)成立,求p的取值范围;
(5)若p>1,且对任意x1∈[2,e],存在x2∈[2,e],使不等式f(x1)>g(x2)成立,求p的取值范围.

查看答案和解析>>

同步练习册答案