精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=|mx|-|x-1|(m>0),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为(  )
A.0<m≤1B.$\frac{4}{3}$≤m<$\frac{3}{2}$C.1<m<$\frac{3}{2}$D.$\frac{3}{2}$≤m<2

分析 f(x)<0可化为|mx|<|x-1|,作函数y=|mx|与函数y=|x-1|的图象,由数形结合求解即可.

解答 解:f(x)<0可化为|mx|<|x-1|,
作函数y=|mx|与函数y=|x-1|的图象如下,

结合图象可知,
关于x的不等式f(x)<0的解集中的3个整数解为0,-1,-2;
故只需使$\left\{\begin{array}{l}{|-2m|<|-2-1|}\\{|-3m|≥|-3-1|}\end{array}\right.$,
解得,$\frac{4}{3}$≤m<$\frac{3}{2}$;
故选:B.

点评 本题考查了不等式的解与函数的图象的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t使得f(t+x)=tf(x)恒成立,则称y=f(x)是一个“关于t函数”.现有下列“关于t函数”的结论:
①常数函数是“关于t函数”;
②“关于2函数”至少有一个零点;
③f(x)=($\frac{1}{2}$)x是一个“关于t函数”.
其中正确结论的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若Sn是公差不为0的等差数{an}的前n项和,且S1,S2,S4成等比例数列.
(Ⅰ)求等数列S1,S2,S4的公比;
(Ⅱ)若S2=4,设bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn$<\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设不等式组$\left\{\begin{array}{l}x+y-4≤0\\ x≥0\\ y≥0\end{array}\right.$表示平面区域为D,在区域D内随机取一点P,则点P落在圆x2+y2=1内的概率为$\frac{π}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正项数列{an}满足an+12-6an2=an+1an,若a1=2,则数列{an}的前n项和为3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=xex在点(1,e)处的切线与直线ax+by+c=0垂直,则$\frac{a}{b}$的值为(  )
A.$-\frac{1}{2e}$B.$-\frac{2}{e}$C.$\frac{2}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合P={x|x>1},Q={x||x|>0},则下列结论正确的是(  )
A.P=QB.P∪Q=RC.P?QD.Q?P

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若等式$\sqrt{\frac{1-sinx}{1+sinx}}$=tanx-secx恒成立,则x的取值范围是{x|2kπ+$\frac{π}{2}$<x<2kπ+$\frac{3π}{2}$,k∈z}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx+c(a,b为常数),且有x=1的切线为y=$-\frac{1}{2}$.
(1)求f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案