| A. | 0<m≤1 | B. | $\frac{4}{3}$≤m<$\frac{3}{2}$ | C. | 1<m<$\frac{3}{2}$ | D. | $\frac{3}{2}$≤m<2 |
分析 f(x)<0可化为|mx|<|x-1|,作函数y=|mx|与函数y=|x-1|的图象,由数形结合求解即可.
解答 解:f(x)<0可化为|mx|<|x-1|,
作函数y=|mx|与函数y=|x-1|的图象如下,![]()
结合图象可知,
关于x的不等式f(x)<0的解集中的3个整数解为0,-1,-2;
故只需使$\left\{\begin{array}{l}{|-2m|<|-2-1|}\\{|-3m|≥|-3-1|}\end{array}\right.$,
解得,$\frac{4}{3}$≤m<$\frac{3}{2}$;
故选:B.
点评 本题考查了不等式的解与函数的图象的关系应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2e}$ | B. | $-\frac{2}{e}$ | C. | $\frac{2}{e}$ | D. | $\frac{1}{2e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com