精英家教网 > 高中数学 > 题目详情
16.若函数f(x)的零点与g(x)=lnx+2x-8的零点之差的绝对值不超过0.5,则f(x)可以是(  )
A.$f(x)=ln(x-\frac{5}{2})$B.f(x)=(x-4)2C.f(x)=ex-2-1D.f(x)=3x-6

分析 由条件利用函数零点的判定定理可得函数g(x)的零点在区间(3,4)内,由于函数y=ln(x-$\frac{5}{2}$)的零点为x=3.5,可得函数g(x)的零点与函数y=ln(x-$\frac{5}{2}$)的零点差的绝对值不超过0.5,从而得出结论.

解答 解:由于g(x)=lnx+2x-8为(0,+∞)上的增函数,
且g(3)=ln3-2<0,g(4)=ln4>0,
故函数g(x)的零点在区间(3,4)内.
由于函数y=ln(x-$\frac{5}{2}$)的零点为x=3.5,
故函数g(x)的零点与函数y=ln(x-$\frac{5}{2}$)的零点差的绝对值不超过0.5,
故f(x)可以是ln(x-$\frac{5}{2}$),另外三个均不符合,
故选:A.

点评 本题主要考查函数的零点的定义、函数零点的判定定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=ax2+bx在x=$\frac{1}{a}$处有极值,则b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两个垂直的单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{b}$=-$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$=-$\overrightarrow{{e}_{2}}$,则下列命题:
①$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$中任意两个向量都可以作为平面内所有向量的一组基底;
②$\overrightarrow{b}$∥$\overrightarrow{c}$;
③$\overrightarrow{c}$在$\overrightarrow{b}$上的投影为正值;
④若$\overrightarrow{p}$=(x,y),则|$\overrightarrow{p}$|2的最小值为$\frac{3}{4}$.
其中正确的命题是①④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线ax+2by-2=0(a≥b>0),始终平分圆x2+y2-4x-2y-8=0的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.1B.3+2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.关于x的不等式ax2+bx+2>0的解为$(-\frac{1}{2},\frac{1}{3})$.
(1)求a,b的值;
(2)求关于x的不等式$\frac{ax+b}{x-2}$≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x$\sqrt{1-x}$,g(x)=$\sqrt{1-x}$,则f(x)•g(x)的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算${∫}_{1}^{2}$($\frac{1}{x}$+x)dx=ln2+$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=-x3+2ax2-a2x(x∈R),其中a∈R
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a>3时,证明存在k∈[-1,0],使得不等式f(k-cosx)≥f(k2-cos2x)对任意的x∈R恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α∈($\frac{π}{2}$,π),sinα+cosα=$\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

同步练习册答案