精英家教网 > 高中数学 > 题目详情
19.如图所示,网格纸上小正方形的边长为1,粗线为某空间几何体的三视图,则该几何体的体积为(  )
A.8B.6C.4D.2

分析 由三视图可知,两个这样的几何体以俯视图为底面的四棱锥,求出底面面积和高,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,
其底面面积S=$\frac{1}{2}$×(2+4)×2=6,
高h=2,
故体积V=$\frac{1}{3}$Sh=$\frac{1}{3}$×6×2=4,
故选C.

点评 本题考查的知识点是由三视图,求体积,其中根据已知分析出几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.幂函数y=f(x)的图象经过点(-2,-$\frac{1}{8}$),则满足f(x)=27的x值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,P为右支上一点,且|$\overrightarrow{{PF}_{1}}$|=8,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,则双曲线的渐近线方程是(  )
A.y=±2$\sqrt{2}$xB.y=±2$\sqrt{6}$xC.y=±5xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线l1:ax+2y-1=0与l2:3x-ay+1=0垂直,则a=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知两定点M(-1,0),N(1,0),直线l:y=-2x+3,在l上满足|PM|+|PN|=4的点P有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列有关函数单调性的说法,不正确的是(  )
A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数
B.若f(x)为减函数,g(x)为减函数,则f(x)+g(x)为减函数
C.若f(x)为增函数,g(x)为减函数,则f(x)+g(x)为增函数
D.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图是正方体的平面展开图,则在这个正方体中,以下四个判断中,正确的序号是②④.
①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在锐角三角形ABC,角A,B,C的对边分别为a,b,c,且满足(b2-a2-c2)sinAcosA=accos(A+C).
(1)求角A;
(2)若a=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)(2a${\;}^{\frac{3}{2}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

同步练习册答案