精英家教网 > 高中数学 > 题目详情
7.若直线l1:ax+2y-1=0与l2:3x-ay+1=0垂直,则a=(  )
A.-1B.1C.0D.2

分析 由题设条件,可利用两直线垂直的条件建立方程3a-2a=0,解此方程即可得出a的值.

解答 解:∵直线l1:ax+2y-1=0与l2:3x-ay+1=0垂直,
∴3a-2a=0,解得a=0.
故选C.

点评 本题考查两条直线垂直关系与两直线系数之间的关系,解题的关键是正确利用此垂直关系建立方程,本题考查了方程的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.一个盒子里装有7个大小形状相同的球,其中有红色球4个,编号分别为1,2,3,4;白色球3个,编号分别为2,3,4.从盒子中任取3个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的3个球中,含有编号为2的球的概率;
(Ⅱ)求取出的3个球中,最大编号为3的概率;
(Ⅲ)在取出的3个球中,红色球的个数设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:关于x的函数f(x)=x2+2ax+3在(-1,+∞)上为增函数;q:函数f(x)=ax(a>0,a≠1)是R上的减函数;若“p或q”为真命题,“p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC上一点,且BP⊥平面ADM.
(1)求PM的长度;
(2)求MD与平面ABP所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a2+3a8+a14=100,则2a11-a14=(  )
A.20B.18C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$\overrightarrow a$=(4,3),$\overrightarrow a$在$\overrightarrow b$方向上投影为$\frac{5\sqrt{2}}{2}$,$\overrightarrow b$在x轴正方向上的投影为2,且$\overrightarrow b$对应的点在第四象限,则$\overrightarrow b$=(2,14)或$(2,-\frac{2}{7})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,网格纸上小正方形的边长为1,粗线为某空间几何体的三视图,则该几何体的体积为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域
(1)f(x)=$\frac{\sqrt{x+1}}{x}$;
(2)$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$
(3)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离最大值是(  )
A.2+$\sqrt{2}$B.1+$\sqrt{2}$C.$\sqrt{2}$-1D.1+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案