精英家教网 > 高中数学 > 题目详情
17.一个盒子里装有7个大小形状相同的球,其中有红色球4个,编号分别为1,2,3,4;白色球3个,编号分别为2,3,4.从盒子中任取3个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的3个球中,含有编号为2的球的概率;
(Ⅱ)求取出的3个球中,最大编号为3的概率;
(Ⅲ)在取出的3个球中,红色球的个数设为X,求随机变量X的分布列.

分析 (Ⅰ)设“取出的3个球中,含有编号为2的球”为事件A,由互斥事件加法概率计算公式能求出取出的3个球中,含有编号为2的球的概率.
(Ⅱ)设“取出的3个球中,最大编号为3”为事件B,由互斥事件加法概率计算公式能求出取出的3个球中,最大编号为3的概率.
(Ⅲ)随机变量X的所有可能取值为0,1,2,3.分别求出相应的概率,由此能求出随机变量X的分布列.

解答 解:(Ⅰ)设“取出的3个球中,含有编号为2的球”为事件A,则$P(A)=\frac{C_2^1C_5^2+C_2^2C_5^1}{C_7^3}=\frac{5}{7}$
所以取出的3个球中,含有编号为2的球的概率为$\frac{5}{7}$…(4分)
(Ⅱ)设“取出的3个球中,最大编号为3”为事件B,则$P(B)=\frac{C_2^1C_3^2+C_2^2C_3^1}{C_7^3}=\frac{9}{35}$
所以取出的3个球中,最大编号为3的概率为$\frac{9}{35}$…(8分)
(Ⅲ)随机变量X的所有可能取值为0,1,2,3.
$P(X=0)=\frac{C_3^3}{C_7^3}=\frac{1}{35}$,
$P(X=1)=\frac{C_4^1C_3^2}{C_7^3}=\frac{12}{35}$,
$P(X=2)=\frac{C_4^2C_3^1}{C_7^3}=\frac{18}{35}$,
$P(X=3)=\frac{C_4^3}{C_7^3}=\frac{4}{35}$,
所以随机变量X的分布列是:

 X 0 1 2 3
 P $\frac{1}{35}$ $\frac{12}{35}$ $\frac{18}{35}$ $\frac{4}{35}$
…(13分)

点评 本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,等腰梯形ABCD的底边AB在x轴上,顶点A与顶点B关于原点O对称,且底边AB和CD的长分别为6和$2\sqrt{6}$,高为3.
(Ⅰ)求等腰梯形ABCD的外接圆E的方程;
(Ⅱ)若点N的坐标为(5,2),点M在圆E上运动,求线段MN的中点P的轨迹方程,并指出其轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.${({x+\frac{1}{ax}})^5}$的各项系数和是1024,则由曲线y=x2和y=xa围成的封闭图形的面积为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则$\overrightarrow{EB}$+$\overrightarrow{FC}$=(  )
A.?$\frac{1}{2}\overrightarrow{AD}$????B.?$\frac{1}{2}\overrightarrow{BC}$????C.?$\overrightarrow{BC}$????D.$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,则当xy取得最大值时,点P的坐标是($\frac{5}{2}$,5),xy取得的最大值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={-1,1,2,3},集合B={x|x∈A,$\frac{1}{x}$∉A},则集合B中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.幂函数y=f(x)的图象经过点(-2,-$\frac{1}{8}$),则满足f(x)=27的x值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{\sqrt{x-1}}}{x-3}$+(x-1)0的定义域为(  )
A.[1,+∞)B.(1,+∞)C.[1,3)∪(3,+∞)D.(1,3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线l1:ax+2y-1=0与l2:3x-ay+1=0垂直,则a=(  )
A.-1B.1C.0D.2

查看答案和解析>>

同步练习册答案