精英家教网 > 高中数学 > 题目详情
9.幂函数y=f(x)的图象经过点(-2,-$\frac{1}{8}$),则满足f(x)=27的x值是$\frac{1}{3}$.

分析 先设出幂函数的解析式,把点(-2,-$\frac{1}{8}$)代入求出α的值,再把27代入解析式求出x的值.

解答 解:设幂函数y=f(x)=xα,∵过点(-2,-$\frac{1}{8}$),
∴-$\frac{1}{8}$=(-2)α,解得α=-3,∴f(x)=x-3
∴f(x)=27=x-3,解得x=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了幂函数的解析式的求法,即利用待定系数法进行求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知p:x2-x≥6,q:x∈Z.若p∧q和¬q都是假命题,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f (x)是定义在R上的任意不恒为零的函数,则下列判断:
①y=f(|x|)为偶函数;
②y=f(x)+f(-x)为非奇非偶函数;
③y=f(x)-f(-x)为奇函数;
④y=[f(x)]2为偶函数.
其中正确判断的个数有(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个盒子里装有7个大小形状相同的球,其中有红色球4个,编号分别为1,2,3,4;白色球3个,编号分别为2,3,4.从盒子中任取3个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的3个球中,含有编号为2的球的概率;
(Ⅱ)求取出的3个球中,最大编号为3的概率;
(Ⅲ)在取出的3个球中,红色球的个数设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=lgx+$\sqrt{2-x}$的定义域为(  )
A.{x|x≤2}B.{x|x>0}C.{x|x<0或x≥2}D.{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:?x∈R,ax2+ax-1<0,命题q:$\frac{3}{a-1}$+1<0.
(1)若“p或q”为假命题,求实数a的取值范围;
(2)若“非q”是“α∈[m,m+1]”的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(1)当a=-1,b=3时,求函数f(x)在[$\frac{1}{2}$,2]上的最大值和最小值;
(2)当a=0时,是否存在正实数b,当x∈(0,e](e是自然对数底数)时,函数f(x)的最小值是3,若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:关于x的函数f(x)=x2+2ax+3在(-1,+∞)上为增函数;q:函数f(x)=ax(a>0,a≠1)是R上的减函数;若“p或q”为真命题,“p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,网格纸上小正方形的边长为1,粗线为某空间几何体的三视图,则该几何体的体积为(  )
A.8B.6C.4D.2

查看答案和解析>>

同步练习册答案