精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\frac{{\sqrt{x-1}}}{x-3}$+(x-1)0的定义域为(  )
A.[1,+∞)B.(1,+∞)C.[1,3)∪(3,+∞)D.(1,3)∪(3,+∞)

分析 由根式内部的代数式大于等于0,分式的分母不为0,0指数幂的底数不为0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{x-1≥0}\\{x-3≠0}\\{x-1≠0}\end{array}\right.$,解得x>1且x≠3.
∴函数f(x)=$\frac{{\sqrt{x-1}}}{x-3}$+(x-1)0的定义域为(1,3)∪(3,+∞).
故选:D.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A、B、C的对边分别为a、b、c,$\sqrt{3}$sin Ccos C-cos2C=$\frac{1}{2}$,且c=3.
(1)求角C;
(2)若向量$\overrightarrow{m}$=(1,sin A)与$\overrightarrow{n}$=(2,sin B)共线,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个盒子里装有7个大小形状相同的球,其中有红色球4个,编号分别为1,2,3,4;白色球3个,编号分别为2,3,4.从盒子中任取3个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的3个球中,含有编号为2的球的概率;
(Ⅱ)求取出的3个球中,最大编号为3的概率;
(Ⅲ)在取出的3个球中,红色球的个数设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:?x∈R,ax2+ax-1<0,命题q:$\frac{3}{a-1}$+1<0.
(1)若“p或q”为假命题,求实数a的取值范围;
(2)若“非q”是“α∈[m,m+1]”的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(1)当a=-1,b=3时,求函数f(x)在[$\frac{1}{2}$,2]上的最大值和最小值;
(2)当a=0时,是否存在正实数b,当x∈(0,e](e是自然对数底数)时,函数f(x)的最小值是3,若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知四棱锥P一ABCD中,平面PAD丄平面ABCD,其中ABCD为正方形,△PAD 为等腰直角三角形,PA=PD=$\sqrt{2}$,则四棱锥P-ABCD外接球的表面积为(  )
A.10πB.C.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:关于x的函数f(x)=x2+2ax+3在(-1,+∞)上为增函数;q:函数f(x)=ax(a>0,a≠1)是R上的减函数;若“p或q”为真命题,“p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD中,底面为矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M为PC上一点,且BP⊥平面ADM.
(1)求PM的长度;
(2)求MD与平面ABP所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域
(1)f(x)=$\frac{\sqrt{x+1}}{x}$;
(2)$f(x)=\frac{1+{x}^{2}}{1-{x}^{2}}$
(3)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.

查看答案和解析>>

同步练习册答案