| A. | y=±2$\sqrt{2}$x | B. | y=±2$\sqrt{6}$x | C. | y=±5x | D. | y=±$\frac{3}{4}$x |
分析 根据双曲线的定义可知:丨$\overrightarrow{{PF}_{2}}$丨=6,由$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,可得$\overrightarrow{{PF}_{1}}$⊥$\overrightarrow{{PF}_{2}}$,根据勾股定理可得丨F1F2丨=10,求得c,由双曲线a,b和c的关系,求得b,利用双曲线的渐近线方程公式求得双曲线的渐近线方程.
解答 解:由已知a=1,|$\overrightarrow{{PF}_{1}}$|=8,由双曲线的定义可知:丨$\overrightarrow{{PF}_{2}}$丨=6,
又∵$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,
∴$\overrightarrow{{PF}_{1}}$⊥$\overrightarrow{{PF}_{2}}$,
由勾股定理可知:丨F1F2丨=10,
即c=5,b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{6}$,
则渐近线方程为y=±$\frac{b}{a}$x=±2$\sqrt{6}$x,
故选:B.
点评 本题考查双曲线的标准方程,双曲线的定义及其几何性质的应用,勾股定理,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 个 | B. | 2 个 | C. | 3 个 | D. | 4 个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{b}$|=2 | B. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | C. | $\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$ | D. | ($\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$)⊥$\overrightarrow{BC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若直线m、n都平行于平面α,则m∥n | |
| B. | 设α-l-β是直二面角,若直线m⊥l,则m⊥β | |
| C. | 若直线m、n在平面α内的射影依次是一个点和一条直线,且m⊥n,则n在α内或n与α平行 | |
| D. | 设m、n是异面直线,若m与平面α平行,则n与α相交 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com