精英家教网 > 高中数学 > 题目详情

【题目】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;

1

1

﹣0.8

0.1

﹣0.3

﹣1


(2)设数表A∈S(2,3)形如

1

1

c

a

b

﹣1

求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.

【答案】
(1)解:由题意可知r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8

∴K(A)=0.7


(2)解:先用反证法证明k(A)≤1:

若k(A)>1

则|c1(A)|=|a+1|=a+1>1,∴a>0

同理可知b>0,∴a+b>0

由题目所有数和为0

即a+b+c=﹣1

∴c=﹣1﹣a﹣b<﹣1

与题目条件矛盾

∴k(A)≤1.

易知当a=b=0时,k(A)=1存在

∴k(A)的最大值为1


(3)解:k(A)的最大值为

首先构造满足 的A={aij}(i=1,2,j=1,2,…,2t+1):

经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且

下面证明 是最大值.若不然,则存在一个数表A∈S(2,2t+1),使得

由k(A)的定义知A的每一列两个数之和的绝对值都不小于x,而两个绝对值不超过1的数的和,其绝对值不超过2,故A的每一列两个数之和的绝对值都在区间[x,2]中.由于x>1,故A的每一列两个数符号均与列和的符号相同,且绝对值均不小于x﹣1.

设A中有g列的列和为正,有h列的列和为负,由对称性不妨设g<h,则g≤t,h≥t+1.另外,由对称性不妨设A的第一行行和为正,第二行行和为负.

考虑A的第一行,由前面结论知A的第一行有不超过t个正数和不少于t+1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x﹣1(即每个负数均不超过1﹣x).因此|r1(A)|=r1(A)≤t1+(t+1)(1﹣x)=2t+1﹣(t+1)x=x+(2t+1﹣(t+2)x)<x,

故A的第一行行和的绝对值小于x,与假设矛盾.因此k(A)的最大值为


【解析】(1)根据ri(A),Cj(A),定义求出r1(A),r2(A),c1(A),c2(A),c3(A),再根据K(A)为|r1(A)|,|R2(A)|,|R3(A)|,|C1(A)|,|C2(A)|,|C3(A)|中的最小值,即可求出所求.(2)先用反证法证明k(A)≤1,然后证明k(A)=1存在即可;(3)首先构造满足 的A={aij}(i=1,2,j=1,2,…,2t+1),然后证明 是最大值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:

品牌

首次出现故障时间x(年)

0<x<1

1<x≤2

x>2

0<x≤2

x>2

轿车数量(辆)

2

3

45

5

45

每辆利润(万元)

1

2

3

1.8

2.9

将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1 , 生产一辆乙品牌轿车的利润为X2 , 分别求X1 , X2的分布列;
(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两车间的月产值在2017年1月份相同,甲车间以后每个月比前一个月增加相同的产值,乙车间以后每个月比前一个月增加产值的百分比相同.到2017年7月份发现两车间的月产值又相同,比较甲、乙两个车间2017年4月份月产值的大小,则(  )

A. 甲车间大于乙车间 B. 甲车间等于乙车间

C. 甲车间小于乙车间 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);

“厨余垃圾”箱

“可回收物”箱

“其他垃圾”箱

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60


(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2= [ + +…+ ],其中 为数据x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.

(1)证明:G是AB的中点;
(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,圆C的方程为 (θ为参数).以坐标原点O为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.

(Ⅰ)当时,判断直线的关系;

(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值.

(1)求的取值范围;

(2)若处取得极值,且当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案