分析 分别作出函数①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x的图象,数形结合可得答案.
解答 解:若满足条件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$ (0<x1<x2),则函数f(x)的图象为上凸形,
分别作出函数①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x的图象,![]()
![]()
![]()
![]()
,
数形结合可得,只有④、⑤满足条件,
故答案为:④⑤.
点评 本题考查命题的真假判断与应用,着重考查幂函数、指数函数、对数函数、三角函数的图象与性质,作图分析是关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (0,2) | C. | (0,1) | D. | (0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3 个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<λ2<λ1 | B. | λ2<λ1<0 | C. | λ1<λ2<0 | D. | 0<λ1<λ2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com