精英家教网 > 高中数学 > 题目详情
19.函数f(x)=ln(x+1)-x的单调递减区间为(0,+∞).

分析 先求出函数的定义域,求出函数f(x)的导函数,在定义域下令导函数小于0得到函数的递减区间.

解答 解:函数f(x)的定义域是x>-1.
且f′(x)=$\frac{1}{x+1}$-1,
令f′(x)<0得$\frac{1}{x+1}<1$,解得x>0
所以函数f(x)=ln(x+1)-x的单调减区间是(0,+∞).
故答案为:(0,+∞).

点评 求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\frac{x}{x+2}$(x>0),观察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根据以上事实,由归纳推理可得:当n∈N+时,fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函数ϕ(x)在区间(3m,m+$\frac{1}{2}$)上单调递减,求实数m的取值范围;
(2)若对任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosα\\ y=2sinα\end{array}\right.$(α为参数).以原点为极点,x轴正半轴为极轴建立极坐标系.直线l的极坐标方程为ρcosθ+ρsinθ+1=0.
(1)写出圆C的普通方程;
(2)将直线l的极坐标方程化为直角坐标方程;
(3)过直线l的任意一点P作直线与圆C交于A,B两点,求|PA|•|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.随机调查高河镇某社区80个人,以研究这一社区居民在20:00--22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视看书合计
105060
101020
合计206080
(1)从这80人中按照性别进行分层抽样,抽出4人,则男女应各抽取多少人;
(2)从第(1)问抽取的4位居民中随机抽取2位,恰有1男1女的概率是多少;
(3)由以上数据,能否有99%的把握认为在20:00-22:00时间段的休闲方式与性别有关系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数y=f(x)图象的一部分,则函数y=f(x)的解析式可能为(  ) 
A.y=sin(x+$\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(4x-$\frac{π}{3}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,A=60°,且$\frac{c}{b}$=$\frac{4}{3}$,则sinC=$\frac{2\sqrt{39}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三棱锥的六条棱中任意选择两条,则这两条棱有公共点的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于实数a和b,定义运算“*”:a*b=$\left\{\begin{array}{l}{-{a}^{2}+2ab-1,a≤b}\\{{b}^{2}-ab,a>b}\end{array}\right.$,设f(x)=(2x-1)*(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1•x2•x3的取值范围是(-$\frac{1}{32}$,0).

查看答案和解析>>

同步练习册答案