精英家教网 > 高中数学 > 题目详情
4.如图是函数y=f(x)图象的一部分,则函数y=f(x)的解析式可能为(  ) 
A.y=sin(x+$\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(4x-$\frac{π}{3}$)D.y=cos(2x-$\frac{π}{6}$)

分析 由函数的最大值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.

解答 解:根据函数y=f(x)图象的一部分,可设f(x)=sin(ωx+φ),由$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,可得ω=2,
再根据五点法作图可得2×$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,故f(x)=sin(2x+$\frac{π}{3}$)=cos(2x-$\frac{π}{6}$),
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最大值求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=$\frac{1}{2},q=-\frac{2}{3}$,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=4m+1(m∈N*)?如果存在,求p和q的取值范围;如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )
A.函数f(x)有极大值f(-2),无极小值B.函数f(x)有极大值f(1),无极小值
C.函数f(x)有极大值f(-2)和极小值f(1)D.函数f(x)有极大值f(1)和极小值f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四面体ABCD的顶点都在球O的球面上,AD=AC=BD=2,CD=2$\sqrt{2}$,∠BDC=90°,平面ADC⊥平面BDC,则球O的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=ln(x+1)-x的单调递减区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,则a、b的值为(  )
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆(x-1)2+(y-1)2=4上到直线y=x+b的距离等于1的点有且仅有2个,则b的取值范围是(  )
A.(-$\sqrt{2}$,0)U(0,$\sqrt{2}$)B.(-3$\sqrt{2}$,3$\sqrt{2}$)C.(-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$)D.(-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正数x,y满足4x+y-1=0,则$\frac{x+y}{xy}$的最小值为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知内角A=$\frac{π}{3}$,边BC=2$\sqrt{3}$.设内角B=x,面积为y.
(Ⅰ)求函数y=f(x)的解析式和定义域;
(Ⅱ)求y的最大值.

查看答案和解析>>

同步练习册答案