精英家教网 > 高中数学 > 题目详情
12.已知四面体ABCD的顶点都在球O的球面上,AD=AC=BD=2,CD=2$\sqrt{2}$,∠BDC=90°,平面ADC⊥平面BDC,则球O的体积为4$\sqrt{3}$π.

分析 由题意,BC的中点O′是△DBC外接圆的圆心,设球心为O,OO′=d,球的半径为R,则由勾股定理可得R2=d2+($\sqrt{3}$)2=12+($\sqrt{2}$-d)2,求出球的半径,即可求出球O的体积.

解答 解:由题意,BC的中点O′是△DBC外接圆的圆心,设球心为O,OO′=d,球的半径为R,则
由勾股定理可得R2=d2+($\sqrt{3}$)2=12+($\sqrt{2}$-d)2,∴R=$\sqrt{3}$,
∴球O的体积为$\frac{4}{3}•(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案为4$\sqrt{3}$π.

点评 本题考查球O的体积,考查学生的计算能力,求出球O的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知⊙C:(x-6)2+y2=4,直线过点P(0,2)且斜率为k.
(1)若直线与⊙C有公共点,求k的取值范围;
(2)若直线与⊙C交于不同两点A、B,是否存在常数k,使以AB为直径的圆过⊙C的圆心C?若存在,试求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{1}{3}{x^3}$+ax2+(a+2)x-3有两个极值点,则实数a的取值范围是(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线x+y-1=0与抛物线y=2x2交于A,B两点,则点M(1,0)到A,B两点的距离之积为(  )
A.$4\sqrt{2}$B.$2\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosα\\ y=2sinα\end{array}\right.$(α为参数).以原点为极点,x轴正半轴为极轴建立极坐标系.直线l的极坐标方程为ρcosθ+ρsinθ+1=0.
(1)写出圆C的普通方程;
(2)将直线l的极坐标方程化为直角坐标方程;
(3)过直线l的任意一点P作直线与圆C交于A,B两点,求|PA|•|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=x2-mx+1,
(1)若函数y=f(x)是偶函数,求实数m的取值范围;
(2)若函数g(x)=f(x)+(2m-1)x-9,且?m∈[-1,3],都有g(x)≤0恒成立,求实数x的取值范围;
(3)若函数h(x)=f(x)-(1-m)x2+2x,求函数y=h(x)在x∈[-1,1]的最小值H(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数y=f(x)图象的一部分,则函数y=f(x)的解析式可能为(  ) 
A.y=sin(x+$\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(4x-$\frac{π}{3}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg,已知当年产量低于350kg时,单位售价为20元/kg,若当年产量不低于350kg而低于550时,单位售价为15元/kg,当年产量不低于550kg时,单位售价为10元/kg.
(1)求图中a,b的值;
(2)试估计年销售额大于5000元小于6000元的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合p={x|y=lg(x-1)},Q={y|y=2-|x|},R为实数集,则(  )
A.p?QB.P∩Q=∅C.P∪Q=QD.CRP=Q

查看答案和解析>>

同步练习册答案