精英家教网 > 高中数学 > 题目详情
1.某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg,已知当年产量低于350kg时,单位售价为20元/kg,若当年产量不低于350kg而低于550时,单位售价为15元/kg,当年产量不低于550kg时,单位售价为10元/kg.
(1)求图中a,b的值;
(2)试估计年销售额大于5000元小于6000元的概率?

分析 (1)由频率分布直方图的性质列出方程组,能求出图中a,b的值.
(2)当年产量大于250kg而低于300kg,或年产量大于350kg而低于400kg,或年产量大于550kg而低于600kg时,其年销售额为大于5000而低于6000元,由此能估计年销售额大于5000元小于6000元的概率.

解答 解:(1)由已知,得:
$\left\{\begin{array}{l}{100(a+0.015+b+0.0040)=1}\\{300×100a+400×0.4+500×100b+600×0.15=455}\end{array}\right.$,
即$\left\{\begin{array}{l}{100(a+b)=0.45}\\{300a+500b=2.05}\end{array}\right.$,
解得a=0.001,b=0.0035.(6分)
(2)由(1)结合直方图可知,
当年产量大于250kg而低于300kg,
或年产量大于350kg而低于400kg,
或年产量大于550kg而低于600kg时,
其年销售额为大于5000而低于6000元,
所以估计年销售额大于5000元小于6000元的概率为50×(0.001+0.004+0.0015)=0.325.(12分)

点评 本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某调查机构为了研究“户外活动的时间长短”与“患感冒”两个分类变量是否相关,在该地随机抽取了若干名居民进行调查,得到数据如表所示:
患感冒不患感冒合计
活动时间超过1小时204060
活动时间低于1小时301040
合计5050100
若从被调查的居民中随机抽取1人,则取到活动时间超过1小时的居民的概率为$\frac{3}{5}$.
(1)完善上述2×2列联表;
(2)能否在犯错误的概率不超过0.1%的前提下,认为“户外活动的时间长短”与“患感冒”两者间相关.
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四面体ABCD的顶点都在球O的球面上,AD=AC=BD=2,CD=2$\sqrt{2}$,∠BDC=90°,平面ADC⊥平面BDC,则球O的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,则a、b的值为(  )
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆(x-1)2+(y-1)2=4上到直线y=x+b的距离等于1的点有且仅有2个,则b的取值范围是(  )
A.(-$\sqrt{2}$,0)U(0,$\sqrt{2}$)B.(-3$\sqrt{2}$,3$\sqrt{2}$)C.(-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$)D.(-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段间隔为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正数x,y满足4x+y-1=0,则$\frac{x+y}{xy}$的最小值为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x,y满足$\left\{{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}}\right.$,则z=2x+3y的取值范围是[-4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义实数a,b间的计算法则如下a△b=$\left\{\begin{array}{l}a,\;\;a≥b\\{b^2},a<b\end{array}$.
(1)计算2△(3△1);
(2)对0<x<z<y的任意实数x,y,z,判断x△(y△z)与(x△y)△z的大小,并说明理由;
(3)写出函数y=(1△x)+(2△x),x∈R的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

查看答案和解析>>

同步练习册答案