精英家教网 > 高中数学 > 题目详情
11.定义实数a,b间的计算法则如下a△b=$\left\{\begin{array}{l}a,\;\;a≥b\\{b^2},a<b\end{array}$.
(1)计算2△(3△1);
(2)对0<x<z<y的任意实数x,y,z,判断x△(y△z)与(x△y)△z的大小,并说明理由;
(3)写出函数y=(1△x)+(2△x),x∈R的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

分析 (1)先求出3△1,再求出2△(3△1)的值即可;
(2)分别求出x△(y△z)和(x△y)△z的值,讨论y2与z的大小即可;
(3)讨论x的大小,分x≥2,x<1,1≤x<2,求得函数式,画出函数图象,即可得到该函数单调递增区间和值域.

解答 解:(1)实数a,b间的计算法则如下a△b=$\left\{\begin{array}{l}a,\;\;a≥b\\{b^2},a<b\end{array}$.
则2△(3△1)=2△3=32=9;
(2)对0<x<z<y的任意实数x,y,z,
x△(y△z)=x△y=y2
(x△y)△z=y2△z,
此时若y2≥z,则(x△y)△z=y2
若y2<z,则(x△y)△z=z2
即若y2≥z,则x△(y△z)=(x△y)△z;
若y2<z,则x△(y△z)>(x△y)△z.
(3)当x>2时,y=(1△x)+(2△x)=x2+x2=2x2
当1<x≤2时,y=(1△x)+(2△x)=x2+2;
当x≤1时,y=(1△x)+(2△x)=1+2=3.
即有y=$\left\{\begin{array}{l}{3,x≤1}\\{{x}^{2}+2,1<x≤2}\\{2{x}^{2},x≥2}\end{array}\right.$,
画出函数y的图象,如右:
该函数单调递增区间为(1,2),(2,+∞);
值域为[3,+∞).

点评 本题考查了新定义的理解和运用,考查分类讨论思想方法,以及数形结合思想方法,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg,已知当年产量低于350kg时,单位售价为20元/kg,若当年产量不低于350kg而低于550时,单位售价为15元/kg,当年产量不低于550kg时,单位售价为10元/kg.
(1)求图中a,b的值;
(2)试估计年销售额大于5000元小于6000元的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合p={x|y=lg(x-1)},Q={y|y=2-|x|},R为实数集,则(  )
A.p?QB.P∩Q=∅C.P∪Q=QD.CRP=Q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=1,a4=7,且an+1=an+λn.
(1)求λ的值及数列{an}的通项公式an
(2)设${b_n}=\frac{1}{{{a_{n+1}}-1}}$,数列{bn}的前n项和为Tn,证明:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义域为R的函数,且满足f(x+2)=-$\frac{1}{f(x)}$,当2≤x≤3时,f(x)=x+$\frac{1}{2}$,则f(-$\frac{11}{2}$)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,则目标函数z=x+2y(  )
A.有最小值3,无最大值B.有最小值5,无最大值
C.有最大值3,无最小值D.有最大值5,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在空间四边形ABCD中,AB,BC,CD,DA的长和两条对角线AC,BD都相等,且E为AD的中点,F为BC的中点,则直线BE和平面ADF所成的角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四面体S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,则该四面体外接球的体积是(  )
A.8$\sqrt{6}$πB.$\sqrt{6}$πC.24πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在R上的可导函数,当x∈(1,+∞)时,(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=$\frac{1}{{\sqrt{2}-1}}f(\sqrt{2})$,则a,b,c的大小关系是(  )
A.c<a<bB.a<b<cC.b<a<cD.a<c<b

查看答案和解析>>

同步练习册答案