精英家教网 > 高中数学 > 题目详情
20.在四面体S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,则该四面体外接球的体积是(  )
A.8$\sqrt{6}$πB.$\sqrt{6}$πC.24πD.

分析 证明SA⊥AB,SC⊥BC,可得SB的中点为四面体外接球的球心,球的半径为$\frac{\sqrt{6}}{2}$,即可求出该四面体外接球的体积.

解答 解:∵AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,
∴SA2+AB2=SC2+BC2=SB2
∴SA⊥AB,SC⊥BC,
∴SB的中点为四面体外接球的球心,球的半径为$\frac{\sqrt{6}}{2}$,
∴该四面体外接球的体积是$\frac{4}{3}π•(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π,
故选:B.

点评 解决此类问题的关键是熟悉几何体的结构特征,利用已知条件求出线段长度,进而确定球心的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若x,y满足$\left\{{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}}\right.$,则z=2x+3y的取值范围是[-4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义实数a,b间的计算法则如下a△b=$\left\{\begin{array}{l}a,\;\;a≥b\\{b^2},a<b\end{array}$.
(1)计算2△(3△1);
(2)对0<x<z<y的任意实数x,y,z,判断x△(y△z)与(x△y)△z的大小,并说明理由;
(3)写出函数y=(1△x)+(2△x),x∈R的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(x+1)-f(x)=2x-3,且f(0)=2.
(1)求f(x)的解析式;
(2)若g(x)=-2x+m,且y=f(x)的图象恒在y=g(x)的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若x>2,求$\frac{{x}^{2}-4x+5}{x-2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=\sqrt{x}$的反函数是f-1(x)=x2(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项均为正数的数列{an}满足:对任意不小于2的正整数n,都有a1+a2+a3+…+an-1+kan=tan2-1(k,t为常数)成立.
(1)k=$\frac{1}{2}$,t=$\frac{1}{4}$,问:数列{an}是否为等差数列?并说明理由;
(2)若数列{an}是等比数列,求证:t=0且k<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+$\frac{1-x}{ax}$,其中a为大于零的常数..
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.曲线y=$\frac{1}{x}$与直线y=x,x=e以及x轴所围成的封闭图形的面积为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案