分析 作出函数的图象,可得围成的封闭图形为曲边梯形,由此结合定积分计算公式,即可求解.
解答 解:$\left\{\begin{array}{l}{y=\frac{1}{x}}\\{y=x}\end{array}\right.$解得x=±1,
画出曲线y=$\frac{1}{x}$与y=x,x=4以及x轴所围成的封闭图形,如图示:![]()
∴曲线y=$\frac{1}{x}$与y=x,x=4以及x轴所围成的封闭图形的面积是:
S=${∫}_{0}^{1}$xdx+${∫}_{1}^{e}$$\frac{1}{x}$dx=$\frac{1}{2}$x2${|}_{0}^{1}$+lnx${|}_{1}^{e}$=$\frac{1}{2}$+1=$\frac{3}{2}$
故答案为:$\frac{3}{2}$
点评 本题利用定积分计算公式,求封闭曲边图形的面积,着重考查了利用积分公式求原函数和定积分的几何意义等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 8$\sqrt{6}$π | B. | $\sqrt{6}$π | C. | 24π | D. | 6π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | b<a<c | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{3}$,$\frac{2π}{3}$) | B. | ($\frac{π}{6}$,$\frac{5π}{6}$) | C. | (0,$\frac{π}{3}$),($\frac{2π}{3}$,π) | D. | (0,$\frac{π}{6}$),($\frac{5π}{6}$,π) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com