精英家教网 > 高中数学 > 题目详情

【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:

休假次数

0

1

2

3

人数

5

10

20

15


(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

【答案】
(1)解:函数f(x)=x2﹣ηx﹣1过(0,﹣1)点,在区间(4,6)上有且只有一个零点,则必有 ,解得: η<

所以,η=4或η=5

当η=4时,

当η=5时, P,

又η=4与η=5 为互斥事件,由互斥事件有一个发生的概率公式,

所以


(2)解:从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,则ξ的可能取值分别是0,1,2,3,

于是

=

从而ξ的分布列:

ξ

0

1

2

3

P

ξ的数学期望:


【解析】(1)由题意有函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点,进行等价转化为不等式组解出,在有互斥事件有一个发生的概率公式求解即可;(2)由题意利用ξ表示这两人休年假次数之差的绝对值,利用随机变量的定义及随机变量分布列的定义列出随机变量ξ的分布列,在利用随机变量期望的定义求出其期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列,以及对函数的零点的理解,了解函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;
(1)当 时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知点D是AB上一点,满足 ,点E是边CB上一点,满足 . ①当λ= 时,求
②是否存在非零实数λ,使得 ?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通项公式;
(2)设bn=(an+ 2 , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点 为圆心的圆与直线 相切,过点 的动直线与圆 相交于 两点.
(1)求圆 的方程;
(2)当 时,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是;此时四面体F﹣ADP的外接球的半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 恰有2个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}, (Ⅰ)求A∩B、(UA)∪(UB);
(Ⅱ)若{x|2k﹣1≤x≤2k+1}A,求实数k的取值范围.

查看答案和解析>>

同步练习册答案