精英家教网 > 高中数学 > 题目详情
6.S为△ABC所在平面外-点,SA⊥平面ABC,平面SAB⊥平面SBC,求证:AB⊥BC.

分析 作AE⊥SB于E,推导出AE⊥BC,SA⊥BC,由此能证明AB⊥BC.

解答 证明:作AE⊥SB于E,
∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC,
又SA⊥平面ABC,∴SA⊥BC,
∴BC⊥平面SAB,
∴AB⊥BC.

点评 本题考查两直线垂直的证明,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=log5x+x的零点依次为x1、x2、x3,若在如图所示的算法中,另a=x1,b=x2,c=x3,则输出的结果是(  )
A.x1B.x2C.x3D.x2或x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正六棱锥内接于半径为3的球,则当正六棱锥的体积最大时,它的底面边长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数f(x)=$\sqrt{x}$在点x=x0处的瞬时变化率是$\frac{\sqrt{3}}{3}$,则x0的值是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据下列条件,求相应的等差数列{an}的有关未知数:
(1)a1=20,an=54,Sn=999.求d及n;
(2)d=$\frac{1}{3}$,n=37,Sn=629,求a1及an
(3)a1=$\frac{5}{6}$,d=-$\frac{1}{6}$,Sn=-5,求n及an
(4)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某品牌服装店为了庆祝开业两周年的店庆,特举办“你敢买,我就送”的回馈活动,规定店庆当日上门购买指定服装的消费者可参加游戏,赢取奖金,游戏规则为:袋内放有除颜色外完全相同的10个小球,其中5个蓝球,3个黄球,2个红球.游戏者从袋内随机取出一个小球.若是红球,则可得200元奖金;若是黄球,可得100元奖金;若是蓝球,则没有奖金.
(1)求某消费者参加游戏一次,可获得的奖金不低于100元的概率;
(2)若甲乙两名消费者参加该游戏一次,求他们可获得奖金之和的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤0}\\{3x-y≤0}\\{x+y+2≥0}\end{array}\right.$,则z=x-y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明:表面积相等的球和正方体,球的体积大于正方体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点A(2,1,1),B(0,1,-1),C(1,0,1),试找出平面ABC的-个法向量.

查看答案和解析>>

同步练习册答案